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SOME EXTENSIONS OF ENESTROM-KAKEYA THEOREM FOR
QUATERNIONIC POLYNOMIALS

SHAHBAZ MIR AND ABDUL LIMAN

ABSTRACT. In this paper, we will prove some extensions of the Enestrom-Kakeya
theorem to quaternionic polynomials which were already valid for the classical En-
estrom-Kakeya theorem to complex polynomials. Our kind of extensions have con-
siderably improved the bounds by relaxing and weakening the hypothesis in some
cases.

1. Introduction

Although the Fundamental Theorem of Algebra gives the guarantee of existence
of as many zeros of a complex polynomial as its degree in the complex plane. But
the impossibility of algebraically solving in general a polynomial equation of degree
greater than four is an important problem in the history of mathematics. This moti-
vated the study of identifying a suitable region in the complex plane containing some
or all the zeros of a given polynomial. The first result concerning the location of zeros
of a polynomial was probably due to by Gauss [5]. However, regarding the condi-
tion on the coefficients of a polynomial was initially put by Enestrom and Kakeya
independently. The Enestrom-Kakeya theorem for a complex polynomial with real
coefficients also gives the location of zeroes of a polynomial in a particular region and
is defined as follows:

THEOREM 1.1. Ifp(z) = > " asz® is a polynomial of degree n with real coefficients
satistying a, > an—1 > ... > ag > 0, then all the zeros of p(z) lie in |z| < 1.

In the literature [2—4,8-13], several generalisations of Theorem 1.1 have been ob-
tained. In 1967, Joyal et al. [10] extended Theorem 1.1 to those complex polynomials
whose coefficients are monotonic and relaxing the non-negativity condition by proving
the following result:

THEOREM 1.2. Ifp(z) = > asz® is a polynomial of degree n with real coefficients

satisfying a, > a,_1 > ... > ag, then all the zeros of p(z) lie in |z| < %J'“O'
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2. Preliminaries

Quaternions were invented and developed by Irish mathematician William Rowan
Hamilton in 1843 and are essentially a generalisation of Complex numbers to four
dimensions. The set of quaternions is denoted by H in honour of Sir Hamilton and
they form a non-commutative division ring as multiplication of quaternions is not
commutative in general. Quaternions are generally represented in the form: ¢ =
a+ i+ jv+ ko € H, where o, 5,7,0 € R, and i, j and k are the unit vectors along
the three spatial axes and satisfying i = j2 = k? = ijk = —1. The part i + jv + ko
of ¢ is called the vector part (or sometimes imaginary part) and « is the scalar part
(or sometimes real part) of ¢. Since the real numbers is isomorphic to a commutative
sub-division ring of the quaternions. The interest with the quaternions lies, in part,
with the fact that they are a division ring. Ferdinand Georg Frobenius proved in 1878
that only three such real associative division algebras exist: real numbers, complex
numbers and quaternions. Moreover the set of quaternions forms a four dimensional
vector space over R with {1,4,7,k} as a basis. The conjugate of a quaternion q =
a+ i+ jv + ko is denoted by ¢* and is defined as ¢* = o — if — jv — kd and hence
the norm (or length) of a quaternion ¢ = a+ i + jy + k¢ is given by

lall = Vaa* = Va2 + B2+ + 62
A quaternion with a unit norm is called a normalised quaternion.
Let us define the angle 6 between two quaternions ¢; = ay + i + jy + kd; and
q2 = ag + 1B + jy2 + ks as

Z(q1,q2) = cos™! (

arag + B1fs + 172 + 5152)
lqull]lg=|]

and the class of all n'* degree quaternionic polynomials by

P, = {p(Q);p(Q) = quas} -

In 2020, Carney et al. [2] proved the following extension of Theorem 1.1 to the
quaternionic polynomial p(q).

THEOREM 2.1. All the zeros of the polynomial p € P,, of degree n with real coeffi-
cients, such that a, > an,_1 > ... > a9 > 0 lie in |q| < 1.

In the same paper, they also proved the following refinement of Theorem 2.1 by
removing the positivity condition on the coefficients of p(q), which in turn yields in
the generalization of Theorem 1.2 for p € P,, with quaternionic coefficients.

THEOREM 2.2. All the zeros of the polynomial p € IP,, of degree n with quaternionic
coefficients as = g +10s + jvs + kés € H, 0 < s < n, such that a,, > v, 1 > ... > ay,
ﬁn Z ﬂnfl 2 2 ﬁO: Tn 2 Tn—1 2 2 70, 5n 2 (Snfl 2 Z 50 lie in:

lq| < ai[(|040| — g+ an) + (|180] = Bo + Ba) + (0] = 70 +¥n) + ([00] — o + 6,)].

nl

They also proved the following two results in the same paper:
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THEOREM 2.3. Let p(q) = >.._,q¢°as be a quaternionic polynomial of degree n
satisfying o, > a,_1 > ... > ag > 0, # 0, then all the zeros of p lie in:

n

2
ol <1+ =3 (18] + hel +10.1).

" s=0

THEOREM 2.4. Let p(q) = Y_, ¢°as be a polynomial of degree n with quaternionic
coefficients and quaternionic variable. Let b be a nonzero quaternion and suppose
Z(as,b) < 0 < F for some 0 and s = 0,1,2,...,n. Assume |a,| > [an_1| > ... > |ag|.
Then all the zeros of p lie in:

. n—1
2sin 6
lq| < cosf +sinf + |sm’ E las|.
an
s=0

Recently, Dinesh Tripathi [3] relaxed the condition on the coefficients of Theorem
2.2 and proved the following result.

THEOREM 2.5. If p(q) = > »_, ¢°a, is a polynomial of degree n with quaternionic
coefficients a, € H,0 < s < n such that:
Qp Z Q1 Z Z ap, /Bn Z 6n—1 2 Z 5l; Tn Z Tn—1 Z Z Vi, 6n Z 5n—l Z Z
91,0 <1 < n, then all the zeros of p(q) lie in

al < llool + 1Bl + ol + 3ol + (e = ) + (B = 6 + (3 = ) + (5o — 1) + M

nl

where

l
My =" [los = aig-al + B, = Bl + s = or| + 16, = 8-a].

s=1

We too relaxed the conditions on the coefficients of the quaternionic polynomial
p € P, in some other ways and obtained the following desired results that are valid
in a bigger class of quaternionic polynomials.

3. Main Results

In this direction, we first prove the following result which gives the generalisation
of Theorem 2.5 and hence the generalisation of Theorem 2.2.

THEOREM 3.1. If p(q) = > ", ¢°as is a polynomial of degree n with quaternionic
coefficients and quaternionic variable where a; = as + i85 + j7vs + kds for s= 0, 1,...,
n such that for some k > 1 and for some A\ > 0, we have:
kan > Qpl 2 2 )\Oéla kﬁn > ﬁnfl Z o = )\Bl; kﬁ)/n > Tn—1 > 2 )\’yl; kfsn >
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Op—1 > ... 2 N0y, 0 <1 <n—1, then all the zeros of p(q) lie in:

gl < {{lao] + 2k — Dan + (1 — Alau| — M) + [[Bo] + (2k — 1)8,

|an|

+(L =18 = AB] + Il + 2k = Dy + (1 = A) | — An] +

or

lq| < ﬁ{“%’ +(2k — D, + (A = D]eu| = Aau] + [[Bo] + (2k — 1) B,
+A =D = A8 + [I7o| + 2k = 1)y + (A = D[] — M) +
[|60] + (2 = 1)6, + (A = D)|&] = A&+ M} if A>1

where
I

M= 3" (Jaw = sl + 18 = Bual + 1 = 7] + 16, = 6] ).

s=1

Applying Theorem 3.1 for the polynomial p(q) having real coefficients, i.e., 5 =
v =6 = 0, the following result is a consequence.

COROLLARY 1. All the zeros of the polynomial p € P, with real coefficients a,
0 < s < n, such that ka, > a,_1 > ...> Xa;, 0 <[ <n—1,k>1and X\ > 0 lie in:

gl < gllaol + (2k = Dan + (1= Nlar| = Aar] + 35y lam — amal] i A< 1
or
lal < pipllaol + (2k = Dan + (A = Dl = Aa] + 30,2 lam — amal] i A1

If we assume [ = 0, then the following result obtains from corollary 1.
COROLLARY 2. All the zeros of the polynomial p € P, with real coefficients a,
0 < s <n, such that ka,, > a,_1 > ... > Aag, k > 1 and \ > 0 lie in:

1
lq] < —[(2—)\)|a0|+(2k—l)an+]a0|—)\ao if A<1

|an

or

1
i< ‘[<|ao|—ao>+<2k—1>an} i oA> 1

REMARK 1. Theorem 2.2 is a special case of Theorem 3.1 by taking k =1,1 =10
and A = 1.

REMARK 2. Theorem 2.5 is also special case of Theorem 3.1 by taking £ = 1 and
A=1.

THEOREM 3.2. If p(q) = > »_, ¢°as is a quaternionic polynomial of degree n satis-
fying oy + A > 1> ... > oy, oy, #0 with A > 0 and 0 < | < n , then all the zeros
of p lie in:

lg] <

{Oén + 2\ — o + |Oé()| + Nl + QZHﬁsl + |’Vs| + |6S|]}

|O'/n| s=0
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where
!

Nl = Z ‘O&S — Oés,1|.

s=1

If we put [ = 0, we have the following result.

COROLLARY 3. If p(q) = >, ¢°a, is a quaternionic polynomial of degree n sat-
isfying o, + A > a1 > .. > g, # 0 with A > 0, then all the zeros of p lie
in:

1 n
< —(an+2A—ao+ ool + 25 (18 + ul + M)-

|O[n| s=0

Also by taking A = (k — 1)ay, o, # 0 and & > 1 in Theorem 3.2, we have the
following corollary.

COROLLARY 4. If p(q) = """, ¢°a, is a quaternionic polynomial of degree n sat-
istying ko, > a1 > .. > o, o, # 0 with k > 1 then all the zeros of p lie in:

1 n
lql < a—((zk — Dan — ag + o] + N+ 2> [1Bs| + 1l + |5s|}>

n s=0

where N; is defined already in Theorem 3.2.

Note 1. Though not mentioned in the above statement that unless k£ = 1, corollary
4 makes sense only when both «,, and «,_; are positive because otherwise it might
not be possible to find k£ > 1 that would satisfy the hypothesis of this Corollary.

REMARK 3. Theorem 2.3 is a special case of corollary 3 by taking A = 0 and
Qo > 0.

THEOREM 3.3. Let p(q) = Y_._,q¢%as be a quaternionic polynomial of degree n.
Let b be a nonzero quaternion and suppose Z(as,b) < ¢ < 7 for some ¢ and for
s=U14+1,..,n. Ifkla,| > |ap_1| > ... > |ay|, 0 <1 < n,and k > 1, then all the zeros
of p lie in:

1
lg] < a—{(k — Dan| + |ao| + k|a,|(cos @ + sin€) — |a;|(sin 6 + cos 6) +

|an|

n—1 l
2311162 |las| + Z las — as_1]}
s=l s=1

If we put [ = 0 in Theorem 3.3, we have the following corollary.

COROLLARY 5. Let p(q) = Y_._,q°as be a quaternionic polynomial of degree n.
Let b be a nonzero quaternion and suppose Z(as,b) < 6 < 7 for some ¢ and for
s=0,1,..,n. If k|la,| > |a,_1| > ... > |ag| with k > 1, then all the zeros of p lie in:

1
lgf < —{(k—1)|a,| + k|an|(cos O + sin0) + |ag|(1 — sinf — cos 0) +
a

|an|

n—1
2sin6 ) lal}.
s=0
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which can be written in more modified form as:

n—1
1
lq| < ﬁ((k — )|an| + klan|(cos € + sin0) 4 2sin 0 E |as|)
Qn
s=0

(using cosf +sinf > 1 when 6 €0, %])

REMARK 4. Theorem 2.4 is a special case of Corollary 5 for k£ = 1.

4. Lemmas
We use the following lemmas in the proof of our results.

LEMMA 1. [2] Let f(q) = Y oy q®as and g(q) = > ey q°bs be two given quater-
nionic power series with radii of convergence greater than R. The regular product of
f(q) and g(q) is defined as (f*g)(q) = Doy ¢°Cs, Wherecy =y 7 abs_y. Let |qo| < R,
then (f*g)(qo) = 0 if and only if f(qo) = 0 or f(qo) # 0 implies g(f(q0) *q0f(q0)) = 0.

LEMMA 2. [2] Let q1,qo € H where ¢; = a1 + i1 + jy1 + ko1 and qa = g + i35 +
42 + Kby, such that /(qy, o) =260 < 20, and |q1| < |ga|. Then

12 — q1] < (Jgo] = |q1]) cos @ + (|go| + |a1]) sin 6.

5. Proofs of Theorems

Proof. (of Theorem 3.1) Consider the polynomial f(q) = Y., ¢*(as — as_1) + ao.
Let p(q) * (1 —q) = f(q) — ¢"a,, then by lemma 1, p(q) * (1 — ¢) = 0 if and only

if either p(q) = 0 or p(q) # 0 implies p(q)~'qp(g) — 1 = 0, that is, p(q)~'qp(q) = 1.
If p(q) # 1, then ¢ = 1. Therefore, the only zeros of p(q) * (1 — ¢) are ¢ = 1 and the
zeros of p(q). Therefore for |¢| = 1, we get:

f(@) < laol + ) las — ac]
s=1

= Jao +iBo + jyo + kdo| + Z (s — s1) +2(Bs — Bs—1) +

s=1

j(% - ’stl) + k((ss - 55—1)|

< ool + 180l + ol + 160] + D _lls — aa| + 18 = Boa| +

s=1
h/s - 'stl‘ + ‘55 - 53—1“
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= |ao| + |Bol + 70| + |00] + o, — anea| + |n—1 — o] + ... +
|al+1 - all + |/8n - ﬂn—1| + |/Bn—1 - /Bn—2| + ...+ |Bl+1 - ﬂl| +
Y = Vo1l + -1 = Va2l + o+ [y — 0l + |00 — Ona| +

l
|6n—1 - 5n—2| + ...+ |5l+1 - 6l| + Z (|O{5 - (1/5_1| + |Bs - Bs—1| +

s=1
[Ys = Yo-1| + (05 — 05-1])
= (|a0| + ko, — a1 + o — kay| + a1 — o + oo+ Ay — ap + oy — /\ozl|)
+ (180l 4 |kBn = Bt + Bn — kBl + |Bne1 — Bual + . + A6 — B+ Brea — MBI
+(1ol + 1Y = Yne1 +9n — kYnl + a1 = Ynzl + oo + M0 — 1+ 01 — M)
+ (|60 + ks — Sn1 + 6 — k6| + |0p—1 — Gna| + oo + |AG — & + G141 — AGY|) + M,

where
I

M, = Z (|a5 - 053,1’ + ’Bs - 55—1‘ + h/s — ’7571‘ + ‘55 — 53—1|)-

s=1
This implies
(@] < (Jaol + 2k = D, + (1 = N)|au] = Aew) + (|60] + (26 — 1), +
(L=NB8 = A8) + (ol + 2k — Dy + (1 = X)|u| — dn) +
(160] + 2k = )6, + (L = N)|&i] = A&) + M, if A<1

or

If(@] < (laol + (2k — Day, + (A = D)au| = Aaw) + (|Bol + (2k — 1), +
A =DIBI = A8) + (o] + 2k = Dyn + (A = Dl = ) +
(160] + (2k = 1)0, + (A = D|&| = Ad) + M if A > 1.
Since
n I Iy,
max|q” « f(g)\ = max !f(g)\ = max|f(q)]
Therefore, ¢" * f(%) has the same bound on |¢| =1 as f(q), that is:
"+ f($)| < (Jaol + (2% — D + (1 — Nlau| — Aa) + (1ol + (2k — 1)B,
+(1 = N8Il = A8) + (|70l + 2k = D)yn + (1 = A) || = M)
+(|60] + (2k — 1)8, + (L = N)|&] — A&) + My for  |g| = 1;
when <1
or
" f(é)| < (Jew| + 2k — Do, + (A = D]eu| — Aew) + (1Bo] + (2k — 1) 5,

+A =18 - Aﬁl) + (”Yo’ + 2k =)y + (A= 1)|w| — )\’Yl)
+(|5O| + (2k — 1)0, + (A — 1)|0y| — )\51) + M, for |q| =1,
when A>1
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Applying maximum modulus theorem ( [7] Theorem 3.4), it follows that

" * f($)| < (Jaol + (2k — Doy, + (1 = N)|eu| — Aa) + (|Bo| + (2k — 1),

+(1 = N8l = AB) + (ol + 2k = 1)y + (1 = Nl — )
+(00] + (2k — 1)8, + (1 = N)|&| = A&) + M, for |q| < 1;
when M\ <1

" f%)! < (laol + (2k = Da, + (A = Dau| = Aaw) + (8o + (2k = 1)B,

+A=1)[B] = )‘ﬁl) + (|”Yo| + 2k = 1)y + (A= 1)y — >\’Vl)
+<|50| + (2k = 1)6, + (A = 1)|6;| — )\6;) + M, for |gl <1,
when A >1

That is:

]f(%)\ < ﬁ((!ad (2 — Dy + (1= N — Aa) + (18] + (2% — 1),

+(1 =Nl = A3) + (Jro] + 2k = D)y + (1 = X)) — M)
+ (18] + (2k — 1)6, + (1 = N[5 — A&) + Ml> for |q| < 1;
if A<1

or

P < (] + @k = Dag + (= Dlor] = dau) + (] + (2% = 1),

+(A=1[B] — )\51) + ("Yo‘ + (2k = D)y + (A = 1)|m] — )\’Yl)
+(|d0] + (2k — 1)6, + (A = 1)|6] — A&) + Ml) for |q| < 1;
it A>1.

Replacing ¢ by %, we get for |q| > 1:

@1 < (ool + (2% = D + (1= Nleul = Aa) + (6] + (26 — 13, +
(1= NI = ABy) + (|70l + 2k = Dy + (1= M| = An) +
(1) (160] + (2 — 1)3, + (1 = |6 — A6y + Ml> q* i A<1

@] = ((laol + (2% = Dawn + (A = Dlaa] = Aar) + (18] + (2% = 1),
+(A =18 = AB) (ol + 2k — 1)y + (A = )] — M)
2) +(100] + (2k — 1)8, + (A — 1)|6,] — Ad) + Ml> q" i A>1



Some extensions of Enestrom-Kakeya theorem for quaternionic polynomials 623

But

p(@) (1 =q)l = [f(g) =" "anl
> anllg"™"" = [ f(a)].
Using (1) and (2), we have for |¢| > 1,

p(g) + (1 —q)| = <|an||fJ| = {llew| + 2k = D + (1 = A)leu| = Aa] + [| 5ol

+(2k = 1)B, + (1 = N8 = A8 + [0l + (26 = 1)
(1 = Nyl = Al + [[00] + (2k — 1)6, + (1 — A)[dr] — Ad]

+Ml}>|q|” i A<1
Ip(q) « (1 —q)| > <|an||Q| — {{lao| + (2k = Da, + (A = D]au| — Aau] + [| 5|

+(2k = 1)Bn + (A = D)|B] = A8)] + |70 + 2k — 1),
+A =Dyl = Ml + [[do] + (2k — 1)dn + (A = 1)[6i| — Ady]

+Ml}) q* if A> 1.
This implies that [p(q) * (1 —¢)| > 0, i.e., p(q) * (1 — q) # 0 if:

ol > g (ool + (2 — Do+ (1= X)lau] — Aau] + [[fo] + (2% — 1),

an|
+(1 = NG| = A6 + [|[v] + 2k = 1)y + (1 = A)|w| = A
00 + (2k — 1)6, + (1 — N)&|) — A + Ml> when A< 1

or

ol > (llaol + (2 — D + (A = Dlaa]  Aa] + [16o] + (2% ~ 1)5,

an|
+A =DIB] = A8+ [Ivol + 2k — Dy + (A = D)l — Ay
18]+ (2K — 1)8, + (A — 1)|&] — A + Ml> when A > 1.

Since the only zeros of p(q) * (1 — ¢q) are ¢ = 1 and the zeros of p(q). Therefore,
plg) # 0 for:

ol > ([l + (25 = Dty + (1= Vel = do] + ] + (26 = 1) +
(L =18l = A8+ [lol + (2k = D)y + (1 = A) |l = M) + [[do] +
(2k —1)5n+(1—)\)|6l|—/\5l]+Ml> it A<1

ol > ([l + (25 = Dty + (= Dl = da] + ] + (26 = 1), +

(A =DIB] = AB] + [lol + (2k = D)y + (A = )|l = M) + [[do] +
(2k —1)8, + (A — 1)[d] — A +Ml) it A1
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Hence all the zeros of p(q) lie in :

ol < g (ool + (2 = D+ (1= sl = Xai] + [ 4] + (26 = 1), +
(L= N[B] = AB] + [lvol + (26 = 1)vn + (1 = A || = Av] + [|60] +
(2k — 1)6, + (1 — N)|&i] — Ad] + Ml) it A<1
il < ‘(Hao\ + (2 = Dan + (A = Dlaa] = ) + [1Bo] + (2% = 1) +
(A =DIB] = AB] + [lvol + (26 = 1)vn + (A = L)|w| = Av] + [|60] +
(2k — 1)6, + (A — 1)|6)] — ] +Ml) i A>1
as claimed.

Proof. (of Theorem 3.2): Consider the polynomial

Zq s — Gs—1) + ao

and let p(q) * (1 — q) = f(q) — ¢

Now

n n

Z(ms —as1|) = Z U(O‘S +iBs + jvs + kds)
s=1 s=1
—(045_1 + iﬁs—l +j’)/s—1 + k53—1>|]
= Z [1(ovs = cts1) +i(Bs — Boo1 + J(7s — Ys-1)
s=1

—i__k(és - 53—1)”

S Z(’as - Oésfll) + Z Uﬂs‘ + |ﬁ571’ + h/s‘ + h/sfl’
s=1 s=1
+]64] + 1641]]
= |ap+A—an_1 — AN+ |on—1 — ano| + ... + |1 — oy
l n
+ > (los =t l) + D 18l + 1Bacal + sl + s
s=1 s=1
+|(58| + ]55_1”
< (Q’n +2X — al) + Nl + Z Uﬂs| + |ﬁsfl| + h/s‘ + h/sfl|

s=1

(3) 0] 4+ 10s-1]]
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where
l
N = 3l = o]
s=1
Since
Zq — ae1) + a0+ ¢ (iBn + jn + k6y).

Therefore for |¢| = 1, we get

n

@ < Y (as = asal) + laol + [Bal + [l + 18-

s=1
Using (3), we get

f@] < (o +23—a) + No+ D [18el + 1Becal + sl + [ysa| +

s=1
05| + |65-1]] + o] + 180l + |70l + 80| + 18al + |7al + 100

= (o +2X—ar+]ao]) + N+ 2 (1B + sl + 18]
s=0
But

max‘q x f(= ‘—max|f |—max‘f ‘
lg|=1 lg|=1 lg|=1

This implies

1 n
()] < @+ 2x—artlao) + Nt 23 (18] + il + 18]
s=0

for |q] = 1.

Applying maximum modulus theorem [7] for quaternionic polynomials, it follows that:

1 n
=TGN S on+ 20— antlaol) + N+ 230 (18] + el +164]
s=0
for |q| <1.

Replacing ¢ by %, it yields that:

1 n
I < ((on+20 = o+ faol) + Nk 2 3201861+l + 100l

5=0
for |q| > 1.
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Again, for |¢| > 1,

p(q) «(1—q) = |¢" "o — f(9)]
> "M an| = [f(q)]
> g™ | = lg|™{(an + 2X — oy + |ao]) + N

23 118 + el + 151}

s=0

= (lallowl = [(en + 2% = g + [ag]) + N

+2 311800+ bl + 15511 ol
s=0

On similar lines as done in proof of Theorems 3.1, we finally conclude that all the
zeros of p lie in

al < {<an+2A—al+|ao|>+Nl+22nﬁs|+|%|+|as|]}.

N | n| s=0

This completes the proof of Theorem 3.2 O

Proof. (of Theorem 3.3): Let f(q) = p(q) * (1 — q) + ¢""a,,. Then for [q| =1, we
have

1flo)] = Izq s — as-1) + ag|

< aol + Z |as — a5

< aol + Z |as — as- 1\+Z|as—as 1]

s=l+1

= |:|CLO| + |CLn—CLn_1| + ]an_l —an_2|—|—...—|—\al+1 —

l
+Z |as - a5—1|:|
s=1

= |ao| + |kan — an_1 — ka, + an| + |an—1 — ap_o| + ... +

l
la 1 — ai] + Z las — as_1]
s=1
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That is

F@)] < {Ian|+|kan—an1|+(/~€—1)Ian|+|an1—an2|+---+

!
|1 — ar| + Z |as — as—1|:|
s=1

(k — 1)|an| + |ao| + k|an|(cos @ + sinf) — |a;|(sin @ + cos 0)

IN

n—1 l
—|—2$in92\as| —i—Z\as — a5 1] (by lemma 2).
s=l s=1

Proceeding likewise as in the proof of Theorem 3.1, we finally arrive at:

If(qg)] < {(k — Dan| + |ao| + k|a,|(cos 0 4 sin @) — |a;|(sin @ + cos @) +

n—1 l
2sin0 Y ag| + > Jas — as_ll} for [g] =1
s=l s=1

Since
(@) * (1 —q)] = lanllg"™ = |f(q)|
> |an||q|"+1 — [(k; — D|an| + |ao| + k|a,|(cos 8 + sin 6)
n—1 l
—[ay|(sin 6 + cos ) +2sin 0y Ja,[+ > |a, — a,i|]|g|"
s=l s=1

for |¢| >1
= <\an\|q\ —{(k = 1)|a,| + |ao| + k|an|(cos @ + sin )

n—1 l
—|a|(sin + cos ) + 2sin 0> " Ja,| + Y _ las — as_1|}> g™

s=I s=1

for |q| > 1.
This implies that |p(q) * (1 — ¢)| > 0, i.e., p(q) * (1 — q) # 0 if:

1
lq] > m{(k — D|an| + |ao| + k|a,|(cos 0 + sin6) — |a;|(sin 6 4 cos 6)

n—1 l
—l—QSmGZ las| + Z |as — as_1|}.
s=l s=1

But by lemma 1, p(q) * (1 — ¢) = 0 if and only if either ¢ = 1 or p(q) = 0. Hence all
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the zeros of p(q) lie in:

1
lq] < m((k—1)|any+|a0|+kyan|(cos9+sme)—|a,|(sin0+cose)

n—1 l
+2 sinez las| + Z las — asq\)
s=l s=1

as claimed.
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