과제정보
This work was supported by a grant from 2019 Research Fund of Andong National University.
참고문헌
- S-W. Park, J. H. Ha, J. M. Park, B. W. Cho, and H.-J. Choi, Enhanced capacity retention based silicon nanosheets electrode by CMC coating for lithium-ion batteries, Electronic Materials Letters, 17, 268 (2021). Doi: https://doi.org/10.1007/s13391-021-00275-y
- S. Suh, S. Han, H. Yoon, H. Kim, J. Kang, C. Pak, and H.-J. Kim, Facile one-step fabrication of 3-dimensional SiO2-C electrodes for lithium-ion batteries using a highly porous SBA-15 template and pore-forming agent, Electronic Materials Letters, 18, 197 (2022). Doi: https://doi.org/10.1007/s13391-021-00332-6
- J. Hwang, K. Kim, W.-S. Jung, H. Choi, and J.-H. Kim, Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes, Journal of Power Sources, 436, 226883 (2019). Doi: https://doi.org/10.1016/j.jpowsour.2019.226883
- R. Zhan, X. Wang, Z. Chen, Z. W. Seh, L. Wang, and Y. Sun, Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries, Advanced Energy Materials, 11, 2101565 (2021). Doi: https://doi.org/10.1002/aenm.202101565
- C. Xu, P. J. Reeves, Q. Jacquet, and C. P. Grey, Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries, Advanced Energy Materials, 11, 2003404 (2021). Doi: https://doi.org/10.1002/aenm.202003404
- J. Zheng, Y. Ye, T. Liu, Y. Xiao, C. Wang, F. Wang, and F. Pan, Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control, Accounts of Chemical Research, 52, 2201 (2019). Doi: https://doi.org/10.1021/acs.accounts.9b00033
- M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. Stanley Whittingham, Y. Shirley Meng, and A. Van der Ven, Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials, Advanced Energy Materials, 7, 1602888 (2017). Doi: https://doi.org/10.1002/aenm.201602888
- T. Ohzuku, Formation of Lithium?Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell, The Journal of the Electrochemical Society, 140, 2490 (1993). Doi: https://doi.org/10.1149/1.2220849
- M. N. Obrovac, and V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114, 11444 (2014). Doi: https://doi.org/10.1021/cr500207g
- H. Kim, B. Han, J. Choo and J. Cho, Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries, Angewandte Chemie International Edition, 47, 10151 (2008). Doi: https://doi.org/10.1002/ange.200804355
- A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Materials, 9, 353 (2010). Doi: https://doi.org/10.1038/nmat2725
- J. Liu, P. Kopold, P. A. Van Aken, J. Maier and Y. Yu, Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries, Angewandte Chemie International Edition, 54, 9632 (2015). Doi: https://doi.org/10.1002/ange.201503150
- M. N. Obrovac, and L. J. Krause, Alloy Design for Lithium-Ion Battery Anodes, The Journal of the Electrochemical Society, 154, A103 (2007). Doi: https://doi.org/10.1149/1.2752985
- T. Chen, J. Wu, Q. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, Journal of Power Sources, 363, 126 (2017). Doi: https://doi.org/10.1016/j.jpowsour.2017.07.073
- S. M. Schnurre, J. Grobner, and R. Schmid-Fetzer, Thermodynamics and phase stability in the Si-O system, Journal of Non-Crystalline Solids, 336, 1 (2004). Doi: https://doi.org/10.1016/j.jnoncrysol.2003.12.057
- K. Alkaabi, D. L. Prasad, P. Kroll, N. W. Ashcroft, and R. Hoffmann, Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous? Journal of the American Chemical Society, 136, 3410 (2014). Doi: https://doi.org/10.1021/ja409692c
- H. R. Philipp, Optical properties of non-crystalline Si, SiO, SiOx and SiO2, Journal of Physics and Chemistry of Solids, 32, 1935 (1971). Doi: https://doi.org/10.1016/S0022-3697(71)80159-2
- H. R. Philipp, Optical and bonding model for non-crystalline SiOx and SiOxNy materials, Journal of Non-Crystalline Solids, 8, 627 (1972). Doi: https://doi.org/10.1016/0022-3093(72)90202-5
- Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, and L. Mai, Controllable preparation of disproportionated SiOx/C sheets with 3D network as high-performance anode materials of lithium ion battery Chemical Society Reviews, 48, 285 (2019). Doi: https://doi.org/10.1016/j.apsusc.2021.149446
- R. J. Temkin, An analysis of the radial distribution function of SIOx, Journal of Non-Crystalline Solids, 17, 215 (1975). Doi: https://doi.org/10.1016/0022-3093(75)90052-6
- A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y. Tan, T. Fujita, and M. Chen, Atomic-scale disproportionation in amorphous silicon monoxide, ?Nature communications, 7, 11591 (2016). Doi: https://doi.org/10.1038/ncomms11591
- A. Hohl, T. Wieder, P. A. Van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess, An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO), Journal of Non-Crystalline Solids, 320, 255 (2003). Doi: https://doi.org/10.1016/S0022-3093(03)00031-0
- G. Jeong, J.-H. Kim, Y.-U. Kim, and Y.-J. Kim, Multifunctional TiO2 coating for a SiO anode in Li-ion batteries, Journal of Materials Chemistry, 22, 7999 (2012). Doi: https://doi.org/10.1039/C2JM15677F
- Y. Hwa, C.-M. Park, and H.-J. Sohn, Modified SiO as a high performance anode for Li-ion batteries, Journal of Power Sources, 222, 129 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2012.08.060
- L. Brewer, and R. K. Edwards, The Stability of SiO Solid and Gas, Journal of Physical Chemistry, 58, 351 (1954). Doi: https://doi.org/10.1021/j150514a015
- G. W. Brady, A Study of Amorphous SiO, Journal of Physcial Chemistry, 63, 1119 (1959). Doi: https://doi.org/10.1021/j150577a020
- I. Choi, M. J. Lee, S. M. Oh, and J. J. Kim, Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM, Electrochimica. Acta, 85, 369 (2012). Doi: https://doi.org/10.1016/j.electacta.2012.08.098
- G. Hass, Preparation, Structure, and Applications of Thin Films of Silicon Monoxide and Titanium Dioxide, Journal of the American Ceramic Society, 33, 353 (1950). Doi: https://doi.org/10.1111/j.1151-2916.1950.tb14151.x
- F. A. Costa, A. Silva, J. F. S. Junior, and U. U. Gomes, Composite Ta-Cu powders prepared by high energy milling, International Journal of Refractory Metals and Hard Materials, 26, 499 (2008). Doi: https://doi.org/10.1016/j.ijrmhm.2007.12.002
- C.-K. Lin, S.-S. Hong, E and P.-Y. Lee, Formation of NiAl-Al2O3 intermetallic-matrix composite powders by mechanical alloying technique, Intermetallics, 8, 1043 (2000). Doi: https://doi.org/10.1016/S0966-9795(00)00039-X
- C. dos Santos Torres and L. Schaeffer, Effect of high energy milling on the microstruture and properties of wcni composite, Materials research, 13, 293 (2010). Doi: https://doi.org/10.1590/S1516-14392010000300004
- G. Nallathambi, T. Ramachandran, V. Rajendran, R. Palanivelu, Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics, Materials Research, 14, 552 (2011). Doi: https://doi.org/10.1590/S1516-14392011005000086
- B. B. Fernandes, G. Rodrigues, G. C. Coelho, and A. S.Ramos, On iron contamination in mechanically alloyed Cr-Si powders, Materials Science and Engineering A, 405, 135 (2005). Doi: https://doi.org/10.1016/j.msea.2005.06.003
- Y. Cao, J. C. Bennett, R. A. Dunlap, and M. N. Obrovac, A Simple Synthesis Route for High-Capacity SiOx Anode Materials with Tunable Oxygen Content for Lithium-Ion Batteries, Chemistry of Materials, 30, 7418 (2018). Doi: https://doi.org/10.1021/acs.chemmater.8b02977
- Kim, J. Moon, J. Lee, J.-S. Yu, M. Cho, K. Cho, M.-S. Park, J.-H. Kim, and Y.-J. Kim, Mechanochemically Reduced SiO2 by Ti Incorporation as Lithium Storage Materials, ChemSusChem, 8, 3111 (2015). Doi: https://doi.org/10.1002/cssc.201500638
- F. J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, and G. Hollinger, Microscopic structure of the SiO2/Si interface, Physical Review B, 38, 6084 (1988). Doi: https://doi.org/10.1103/PhysRevB.38.6084
- S. Guruvenket, J. M. Hoey, K. J. Anderson, M. T. Frohlich, R. Krishnan, J. Sivaguru, M. P. Sibi and P. Boudjouk, Synthesis of silicon quantum dots using cyclohexasilane (Si6H12), Journal of materials chemistry, C 4, 8206 (2016). Doi: https://doi.org/10.1039/C6TC01435F
- M. Li, Y. Zeng, Y. Ren, C. Zeng, J. Gu, X. Feng and H. He, Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres, Journal of Power Sources, 288, 53 (2015). Doi: https://doi.org/ 10.1016/j.jpowsour.2015.04.127
- M. Li, Y. Yu, J. Li, B. Chen, A. Konarov and P. Chen, Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithiumion batteries, Journal of Power Sources, 293, 976 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.06.019
- Y. Ren and M. Li, Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance, Journal of PowerSources, 306, 459 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2015.12.064
- J. Wang, H. Zhao, J. He, C. Wang and J. Wang, Nanosized SiOx/C composite anode for lithium ion batteries, Journal of Power Sources, 196, 4811 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.01.053
- P. Lv, H. Zhao, C. Gao, T. Zhang and X. Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries, Electrochimica Acta, 152, 345(2015). Doi: https://doi.org/10.1016/j.electacta.2014.11.149
- M. Yamada, A. Ueda, K. Matsumoto and T. Ohzuku, Silicon-Based Negative Electrode for High-Capacity Lithium-Ion Batteries: "SiO"-Carbon Composite, Journal of the Electrochemical Society, 158, A417 (2011). Doi: https://doi.org/10.1149/1.3551539