DOI QR코드

DOI QR Code

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries

  • Sung Joo, Hong (Department of Materials Science and Engineering, College of Engineering, Andong National University) ;
  • Seunghoon, Nam (Department of Materials Science and Engineering, College of Engineering, Andong National University)
  • 투고 : 2022.11.22
  • 심사 : 2022.11.26
  • 발행 : 2022.12.30

초록

SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.

키워드

과제정보

This work was supported by a grant from 2019 Research Fund of Andong National University.

참고문헌

  1. S-W. Park, J. H. Ha, J. M. Park, B. W. Cho, and H.-J. Choi, Enhanced capacity retention based silicon nanosheets electrode by CMC coating for lithium-ion batteries, Electronic Materials Letters, 17, 268 (2021). Doi: https://doi.org/10.1007/s13391-021-00275-y
  2. S. Suh, S. Han, H. Yoon, H. Kim, J. Kang, C. Pak, and H.-J. Kim, Facile one-step fabrication of 3-dimensional SiO2-C electrodes for lithium-ion batteries using a highly porous SBA-15 template and pore-forming agent, Electronic Materials Letters, 18, 197 (2022). Doi: https://doi.org/10.1007/s13391-021-00332-6
  3. J. Hwang, K. Kim, W.-S. Jung, H. Choi, and J.-H. Kim, Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes, Journal of Power Sources, 436, 226883 (2019). Doi: https://doi.org/10.1016/j.jpowsour.2019.226883
  4. R. Zhan, X. Wang, Z. Chen, Z. W. Seh, L. Wang, and Y. Sun, Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries, Advanced Energy Materials, 11, 2101565 (2021). Doi: https://doi.org/10.1002/aenm.202101565
  5. C. Xu, P. J. Reeves, Q. Jacquet, and C. P. Grey, Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries, Advanced Energy Materials, 11, 2003404 (2021). Doi: https://doi.org/10.1002/aenm.202003404
  6. J. Zheng, Y. Ye, T. Liu, Y. Xiao, C. Wang, F. Wang, and F. Pan, Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control, Accounts of Chemical Research, 52, 2201 (2019). Doi: https://doi.org/10.1021/acs.accounts.9b00033
  7. M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. Stanley Whittingham, Y. Shirley Meng, and A. Van der Ven, Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials, Advanced Energy Materials, 7, 1602888 (2017). Doi: https://doi.org/10.1002/aenm.201602888
  8. T. Ohzuku, Formation of Lithium?Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell, The Journal of the Electrochemical Society, 140, 2490 (1993). Doi: https://doi.org/10.1149/1.2220849
  9. M. N. Obrovac, and V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114, 11444 (2014). Doi: https://doi.org/10.1021/cr500207g
  10. H. Kim, B. Han, J. Choo and J. Cho, Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries, Angewandte Chemie International Edition, 47, 10151 (2008). Doi: https://doi.org/10.1002/ange.200804355
  11. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Materials, 9, 353 (2010). Doi: https://doi.org/10.1038/nmat2725
  12. J. Liu, P. Kopold, P. A. Van Aken, J. Maier and Y. Yu, Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries, Angewandte Chemie International Edition, 54, 9632 (2015). Doi: https://doi.org/10.1002/ange.201503150
  13. M. N. Obrovac, and L. J. Krause, Alloy Design for Lithium-Ion Battery Anodes, The Journal of the Electrochemical Society, 154, A103 (2007). Doi: https://doi.org/10.1149/1.2752985
  14. T. Chen, J. Wu, Q. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, Journal of Power Sources, 363, 126 (2017). Doi: https://doi.org/10.1016/j.jpowsour.2017.07.073
  15. S. M. Schnurre, J. Grobner, and R. Schmid-Fetzer, Thermodynamics and phase stability in the Si-O system, Journal of Non-Crystalline Solids, 336, 1 (2004). Doi: https://doi.org/10.1016/j.jnoncrysol.2003.12.057
  16. K. Alkaabi, D. L. Prasad, P. Kroll, N. W. Ashcroft, and R. Hoffmann, Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous? Journal of the American Chemical Society, 136, 3410 (2014). Doi: https://doi.org/10.1021/ja409692c
  17. H. R. Philipp, Optical properties of non-crystalline Si, SiO, SiOx and SiO2, Journal of Physics and Chemistry of Solids, 32, 1935 (1971). Doi: https://doi.org/10.1016/S0022-3697(71)80159-2
  18. H. R. Philipp, Optical and bonding model for non-crystalline SiOx and SiOxNy materials, Journal of Non-Crystalline Solids, 8, 627 (1972). Doi: https://doi.org/10.1016/0022-3093(72)90202-5
  19. Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, and L. Mai, Controllable preparation of disproportionated SiOx/C sheets with 3D network as high-performance anode materials of lithium ion battery Chemical Society Reviews, 48, 285 (2019). Doi: https://doi.org/10.1016/j.apsusc.2021.149446
  20. R. J. Temkin, An analysis of the radial distribution function of SIOx, Journal of Non-Crystalline Solids, 17, 215 (1975). Doi: https://doi.org/10.1016/0022-3093(75)90052-6
  21. A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y. Tan, T. Fujita, and M. Chen, Atomic-scale disproportionation in amorphous silicon monoxide, ?Nature communications, 7, 11591 (2016). Doi: https://doi.org/10.1038/ncomms11591
  22. A. Hohl, T. Wieder, P. A. Van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess, An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO), Journal of Non-Crystalline Solids, 320, 255 (2003). Doi: https://doi.org/10.1016/S0022-3093(03)00031-0
  23. G. Jeong, J.-H. Kim, Y.-U. Kim, and Y.-J. Kim, Multifunctional TiO2 coating for a SiO anode in Li-ion batteries, Journal of Materials Chemistry, 22, 7999 (2012). Doi: https://doi.org/10.1039/C2JM15677F
  24. Y. Hwa, C.-M. Park, and H.-J. Sohn, Modified SiO as a high performance anode for Li-ion batteries, Journal of Power Sources, 222, 129 (2013). Doi: https://doi.org/10.1016/j.jpowsour.2012.08.060
  25. L. Brewer, and R. K. Edwards, The Stability of SiO Solid and Gas, Journal of Physical Chemistry, 58, 351 (1954). Doi: https://doi.org/10.1021/j150514a015
  26. G. W. Brady, A Study of Amorphous SiO, Journal of Physcial Chemistry, 63, 1119 (1959). Doi: https://doi.org/10.1021/j150577a020
  27. I. Choi, M. J. Lee, S. M. Oh, and J. J. Kim, Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM, Electrochimica. Acta, 85, 369 (2012). Doi: https://doi.org/10.1016/j.electacta.2012.08.098
  28. G. Hass, Preparation, Structure, and Applications of Thin Films of Silicon Monoxide and Titanium Dioxide, Journal of the American Ceramic Society, 33, 353 (1950). Doi: https://doi.org/10.1111/j.1151-2916.1950.tb14151.x
  29. F. A. Costa, A. Silva, J. F. S. Junior, and U. U. Gomes, Composite Ta-Cu powders prepared by high energy milling, International Journal of Refractory Metals and Hard Materials, 26, 499 (2008). Doi: https://doi.org/10.1016/j.ijrmhm.2007.12.002
  30. C.-K. Lin, S.-S. Hong, E and P.-Y. Lee, Formation of NiAl-Al2O3 intermetallic-matrix composite powders by mechanical alloying technique, Intermetallics, 8, 1043 (2000). Doi: https://doi.org/10.1016/S0966-9795(00)00039-X
  31. C. dos Santos Torres and L. Schaeffer, Effect of high energy milling on the microstruture and properties of wcni composite, Materials research, 13, 293 (2010). Doi: https://doi.org/10.1590/S1516-14392010000300004
  32. G. Nallathambi, T. Ramachandran, V. Rajendran, R. Palanivelu, Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics, Materials Research, 14, 552 (2011). Doi: https://doi.org/10.1590/S1516-14392011005000086
  33. B. B. Fernandes, G. Rodrigues, G. C. Coelho, and A. S.Ramos, On iron contamination in mechanically alloyed Cr-Si powders, Materials Science and Engineering A, 405, 135 (2005). Doi: https://doi.org/10.1016/j.msea.2005.06.003
  34. Y. Cao, J. C. Bennett, R. A. Dunlap, and M. N. Obrovac, A Simple Synthesis Route for High-Capacity SiOx Anode Materials with Tunable Oxygen Content for Lithium-Ion Batteries, Chemistry of Materials, 30, 7418 (2018). Doi: https://doi.org/10.1021/acs.chemmater.8b02977
  35. Kim, J. Moon, J. Lee, J.-S. Yu, M. Cho, K. Cho, M.-S. Park, J.-H. Kim, and Y.-J. Kim, Mechanochemically Reduced SiO2 by Ti Incorporation as Lithium Storage Materials, ChemSusChem, 8, 3111 (2015). Doi: https://doi.org/10.1002/cssc.201500638
  36. F. J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, and G. Hollinger, Microscopic structure of the SiO2/Si interface, Physical Review B, 38, 6084 (1988). Doi: https://doi.org/10.1103/PhysRevB.38.6084
  37. S. Guruvenket, J. M. Hoey, K. J. Anderson, M. T. Frohlich, R. Krishnan, J. Sivaguru, M. P. Sibi and P. Boudjouk, Synthesis of silicon quantum dots using cyclohexasilane (Si6H12), Journal of materials chemistry, C 4, 8206 (2016). Doi: https://doi.org/10.1039/C6TC01435F
  38. M. Li, Y. Zeng, Y. Ren, C. Zeng, J. Gu, X. Feng and H. He, Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres, Journal of Power Sources, 288, 53 (2015). Doi: https://doi.org/ 10.1016/j.jpowsour.2015.04.127
  39. M. Li, Y. Yu, J. Li, B. Chen, A. Konarov and P. Chen, Fabrication of graphene nanoplatelets-supported SiOx-disordered carbon composite and its application in lithiumion batteries, Journal of Power Sources, 293, 976 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.06.019
  40. Y. Ren and M. Li, Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance, Journal of PowerSources, 306, 459 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2015.12.064
  41. J. Wang, H. Zhao, J. He, C. Wang and J. Wang, Nanosized SiOx/C composite anode for lithium ion batteries, Journal of Power Sources, 196, 4811 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.01.053
  42. P. Lv, H. Zhao, C. Gao, T. Zhang and X. Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries, Electrochimica Acta, 152, 345(2015). Doi: https://doi.org/10.1016/j.electacta.2014.11.149
  43. M. Yamada, A. Ueda, K. Matsumoto and T. Ohzuku, Silicon-Based Negative Electrode for High-Capacity Lithium-Ion Batteries: "SiO"-Carbon Composite, Journal of the Electrochemical Society, 158, A417 (2011). Doi: https://doi.org/10.1149/1.3551539