DOI QR코드

DOI QR Code

통기밴드식 건조기의 성능 평가 실험 장치

Lab-scale experimental setup to evaluate the performance of band driers

  • Seongmin, Park (Department of Mechanical Engineering, Sogang University) ;
  • Sang Hyun, Oh (Energy Efficiency Research Division, Korea Institute of Energy Research) ;
  • Sung Il, Kim (Energy Efficiency Research Division, Korea Institute of Energy Research) ;
  • Wonjung, Kim (Department of Mechanical Engineering, Sogang University)
  • 투고 : 2022.10.14
  • 심사 : 2022.11.02
  • 발행 : 2022.11.30

초록

Drying process is involved in the production of various products including food, textiles, paper, pharmaceuticals, and batteries. Phase change of liquid to vapor generally requires enormous thermal energy, so in order to save energy, it is advantageous to develop an appropriate drier and use it under appropriate operating conditions, depending on the characteristics of materials. However, due to the complex, multiscale heat and mass transfer occurring during drying processes, predictions of appropriate drying conditions before actual operation are not easily achieved, leading to challenges in designing driers. Here, we developed a lab-scale experimental setup to evaluate the performance of band dries. The experimental setup was used to measure the moisture content and temperature change in the materials being dried in a belt dryer. Experimental results obtained using our lab-scale setup allow us to predict the performance of a full-scale band drier, thus suggesting a practical framework for predicting the drying process of various materials and developing band driers.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(과제번호:20202020800200).

참고문헌

  1. A. Zhu, X. Shen, 2014, "The model and mass transfer characteristics of convection drying of peach slices." Int. J. Heat Mass Transf., Vol. 72, pp.345-351. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.001
  2. C. Chen, C. Venkitasamy, W. Zhang, R. Khir, S. Upadhyaya, and Z. Pan, 2020, "Effective moisture diffusivity and drying simulation of walnuts under hot air." Int. J. Heat Mass Transf., Vol. 150, 119283 https://doi.org/10.1016/j.ijheatmasstransfer.2019.119283
  3. S. Stenstrom, 2019, "Drying of paper: A review 2000-2018." Dry. Technol., Vol. 38(7), pp.825-845. https://doi.org/10.1080/07373937.2019.1596949
  4. K. Abascal, L. Ganora, and E. Yarnell, 2005, "The effect of freeze-drying and its implications for botanical medicine: a review." Phyther. Res. An Int. J. Devoted to Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. Vol. 19(8), pp.655-660.
  5. Y.S. Zhang, N.E. Courtier, Z. Zhang, K. Liu, J.J. Bailey, A.M. Boyce, G. Richardson, P.R. Shearing, E. Kendrick, and D.J.L. Brett, 2022, "A Review of Lithium-Ion Battery Electrode Drying: Mechanisms and Metrology." Adv. Energy Mater. Vol.12, 2102233. https://doi.org/10.1002/aenm.202102233
  6. K.J. Chua, A.S. Mujumdar, M.N.A. Hawlader, S.K. Chou, and J.C. Ho, 2001, "Batch drying of banana pieces-effect of stepwise change in drying air temperature on drying kinetics and product colour." Food Res. Int. Vol. 34, pp.721-731. https://doi.org/10.1016/S0963-9969(01)00094-1
  7. A.S. Mujumdar, 2006, "Handbook of industrial drying." CRC press.
  8. Defraeye, T., Houvenaghel, G., Carmeliet, J., and Derome, D., 2012, "Numerical analysis of convective drying of gypsum boards." Int. J. Heat Mass Transf., Vol. 55(9-10), pp.2590-2600. https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.001
  9. Fagernas, L., Brammer, J., Wilen, C., Lauer, M., and Verhoeff, F., 2010, "Drying of biomass for second generation synfuel production." Biomass and Bioenergy., Vol. 34(9), pp.1267-1277. https://doi.org/10.1016/j.biombioe.2010.04.005
  10. Chen, Guohua, Po Lock Yue, and Arun S. Mujumdar, 2002, "Sludge dewatering and drying." Vol. 20(4-5), pp.883-916.
  11. Polat, S., 1993, "Heat and mass transfer in impingement drying." Dry. Technol., Vol. 11(6), pp.1147-1176. https://doi.org/10.1080/07373939308916894
  12. Sharif, M. A. R., and Banerjee, A., 2009, "Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate." Applied Thermal Engineering, Vol. 29(2-3), pp.532-540. https://doi.org/10.1016/j.applthermaleng.2008.03.011
  13. Jiang, Y., Xu, P., Mujumdar, A. S., Qiu, S., and Jiang, Z., 2012, "A numerical study on the convective heat transfer characteristics of pulsed impingement drying." Dry. Technol., Vol.30(10), pp.1056-1061. https://doi.org/10.1080/07373937.2012.683121
  14. Akan, A. E., Ozkan, D. B., 2020, "Experimental examination and theoretical modeling of drying behavior in the ram machine." Dry. Technol., Vol.38(13), pp.1760-1775. https://doi.org/10.1080/07373937.2019.1662436
  15. Tang, Y., and Min, J., 2019, "Water film coverage model and its application to the convective air-drying simulation of a wet porous medium." Int. J. Heat Mass Transf., Vol. 131, pp.999-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.094