과제정보
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No.: NRF-2020R1A6A1A03040583).
참고문헌
- R. Mu & X. Zeng. (2019). A review of deep learning research. KSII Trans. Internet Inf. Syst, 13(4), 1738-1764. DOI : 10.3837/tiis.2019.04.001
- K. He, X. Zhang, S. Ren & J. Sun. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- J. Long, E. Shelhamer & T. Darrell. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
- R. Huang, J. Pedoeem & C. Chen. (2018). YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 2503-2510). IEEE.
- M. Tan & Q. Le. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR.
- H. Nguyen, L. M. Kieu, T. Wen & C. Cai. (2018). Deep learning methods in transportation domain: a review. IET Intelligent Transport Systems, 12(9), 998-1004. https://doi.org/10.1049/iet-its.2018.0064
- P. W. Khan, Y. C. Byun & N. Park. (2020). A data verification system for CCTV surveillance cameras using blockchain technology in smart cities. Electronics, 9(3), 484. DOI : 10.3390/electronics9030484
- M. J. Shafiee, B. Chywl, F. Li & A. Wong. (2017). Fast YOLO: A fast you only look once system for real-time embedded object detection in video. arXiv Prepr. arXiv1709.05943.
- L. Liu et al. (2020). Deep Learning for Generic Object Detection: A Survey. International journal of computer vision, 128(2), 261-318. https://doi.org/10.1007/s11263-019-01247-4
- Y. C. Ahn & Y. H. Lee. (2019). A Research of CNN based Object Detection for Multiple Object Tracking in Image. Journal of the Semiconductor & Display Technology, 18(3), 110-114.
- P. Wang et al. (2018). Understanding convolution for semantic segmentation. In 2018 IEEE winter conference on applications of computer vision (WACV), 1451-1460.
- M. Yang, K. Yu, C. Zhang, Z. Li & K. Yang. (2018). Denseaspp for semantic segmentation in street scenes. in Proceedings of the IEEE conference on computer vision and pattern recognition, 3684-3692.
- A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez & J. Garcia-Rodriguez. (2017). A review on deep learning techniques applied to semantic segmentation. arXiv Prepr. arXiv1704.06857.
- T. Y. Lin et al. (2014). Microsoft coco: Common objects in context. In European conference on computer vision, 740-755.
- National Information Society Agency. (2021). AI Hub. National Information Society Agency(Online). https://aihub.or.kr