DOI QR코드

DOI QR Code

A Method of Describing and Retrieving Movement of an Object by Using the Shape Variation of an Object

객체의 모양 변화를 이용한 동작 표현 및 검색 방법

  • Choi, Minseok (Division of AI Informatics, Sahmyook University)
  • 최민석 (삼육대학교 지능정보융합학부)
  • Received : 2021.11.30
  • Accepted : 2022.01.20
  • Published : 2022.01.28

Abstract

In the content-based video retrieval applications, the information on the movement of an object can be used as important in classifying the content. In particular, analyzing and classifying human movement can be used for various purposes as well as retrieval. In this paper, a method to improve the performance of the shape variation descriptor and shape sequence to describe and classify movement using shape information that changes according to the movement of an object is proposed. By selecting a shape descriptor to more efficiently describe the shape information of an object and comparing the distance function used to measure the similarity, the description and retrieval efficiency of movement information can be increased. Through experiments, it was shown that the proposed method can describe movement information more efficiently and increase the retrieval efficiency compared to the previous method.

동영상의 내용 기반 검색에 있어 객체의 움직임에 대한 정보는 내용의 분류와 구분에 있어 중요하게 이용될 수 있다. 특히 사람의 동작을 분석하고 구분하는 것은 검색뿐 아니라 다양한 분야에 활용할 수 있다. 본 논문에서는 객체의 움직임에 따라 변화하는 모양 정보를 이용하여 동작을 표현하고 구분하기 위해 제안된 모양 변화 기술자와 모양 시퀀스의 성능을 높이는 방법을 제안한다. 변화하는 객체의 모양 정보를 더 효율적으로 표현하기 위한 모양 기술자의 선택과 유사도 측정을 위해 사용되는 거리함수의 비교를 통하여 동작 정보의 표현 및 검색 효율을 높일 수 있도록 하였다. 실험을 통하여 제안된 방법이 기존의 방법에 비해 더 효율적으로 동작 정보를 표현하여 검색의 성능을 높일 수 있음을 보였다.

Keywords

References

  1. S. J. Kim. (2015). The present and prospect of Online Video, Music service and Media Usage. Journal of Digital Contents Society, 16(1), 137-144. DOI : 10.9728/dcs.2015.16.1.137
  2. M. G. Song, S. J. Jeong, S. H. Choi & K. M. Lee. (2018). Celebrity-indexed video retrieval application using face recognition and tracking. Journal of Digital Contents Society, 19(11), 2049-2058. DOI : 10.9728/dcs.2018.19.11.2049
  3. Y. P. Tan, D. D. Saur, S. R. Kulkami & P. J Ramadge. (2000). Rapid estimation of camera motion from compressed video with application to video annotation. IEEE Transactions on Circuits and Systems for Video Technology, 10(1), 133-146. DOI : 10.1109/76.825867
  4. K. M. Lee. (2013). Dynamic Gesture Recognition using SVM and its Application to an Interactive Storybook. Journal of the Korea Contents Association, 13(4), 64-72. DOI : 10.5392/JKCA.2013.13.04.064
  5. J. Y. Lee & J. S. Kwon. (2020). Application of motion recognition technology for interactive implementation in space. Journal of Digital Contents Society, 21(6), 1171-1179. DOI : 10.9728/dcs.2020.21.6.1171
  6. I. H. Kim & I. H. Jung. (2021). A Study on Korea Sign Language Motion Recognition Using OpenPose Based on Deep Learning. Journal of Digital Contents Society, 22(4), 681-687. DOI : 10.9728/dcs.2021.22.4.681
  7. H. Choi, H. Park & K. Lee. (2016). Gesture-Based User Authentication using Feature Combination and Block-Wise Correlation Coefficients. Journal of Korean Institute of Next Generation Computing, 12(3), 85-93.
  8. J. K. Aggarwal & Q. Cai. (1999). Human Motion Analysis: A Review. Computer Vision and Image Understanding, 73(3), 428-440. DOI : 10.1006/cviu.1998.0744
  9. A. F. Bobick & J. W. Davis. (2001). The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3), 257-267. DOI : 10.1109/34.910878
  10. M. S. Choi & W. Y. Kim. (2004). The description and retrieval of a sequence of moving objects using a shape variation map. Pattern Recognition Letters, 25(12), 1369-1375. DOI : 10.1016/j.patrec.2004.05.010
  11. S. Jeong. (2011). Gait Recognition Using Shape Sequence Descriptor. Journal of the Korea Academia-Industrial cooperation Society, 12(5), 2339-2345. DOI : 10.5762/KAIS.2011.12.5.2339
  12. M. S. Choi. (2009). Movement Search in Video Stream Using Shape Sequence. Journal of Korea Multimedia Society, 12(4), 492-501.
  13. P. Huang, A. Hilton & J. Starck. (2010). Shape Similarity for 3D Video Sequences of People. International Journal of Computer Vision, 89, 362-381. DOI: 10.1007/s11263-010-0319-9
  14. S. Lee, Y. S. Choi, W. Lim, T. K. Kwon & H. K. Kim. (2002). Shape-sequence-based key image generation algorithm for browsing and retrieval of video clips. IEE Electronics Letters, 38(12), 549-550. DOI : 10.1049/el:20020382
  15. M. S Choi. (2008). Efficient Representation and Matching of Object Movement using Shape Sequence Descriptor. KIPS Transaction on Software and Data Engineering, 15(5), 391-396. DOI : 10.3745/KIPSTB.2008.15-B.5.391
  16. S. Li, M. C. Lee & C. M. Pun. (2009). Complex Zernike Moments Features for Shape-Based Image Retrieval. IEEE Transactions on Systems Man and Cybernetics - Part A Systems and Humans, 39(1), 227-237. DOI : 10.1109/TSMCA.2008.2007988
  17. J. M. Lee & W. Y. Kim. (2012). A New Shape Description Method Using Angular Radial Transform. IEICE Transactions on Information and Systems, E95-D(6), 1628-1635. DOI : 10.1587/transinf.E95.D.1628
  18. B. S. Manjunath, J. R. Ohm, V. V. Vasudevan & A. Yamada. (2001). Color and Texture Descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11(6), 703-715. DOI : 10.1109/76.927424