References
- Abaqus (2016), Dassault syst'emes simulia corp, Providence: Rhode Island, U.S.A.
- Adanur, S. (2010), "Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara) earthquakes in Turkey", Nat. Hazard. Earth. Sys., 10(12), 2547-2556. https://doi.org/10.5194/nhess-10-2547-2010.
- Allemang, R.J. (2003), "The modal assurance criterion: Twenty years of use and abuse", Sound Vib., 37(8), 14-23.
- Altunisik, A.C., Okur, F.Y., Genc, A.F., Gunaydin, M. and Karahasan, O. (2018d), "Automated model updating effect on the linear and nonlinear dynamic responses of historical masonry structures", Exp. Tech., 42(6), 605-621. https://doi.org/10.1007/s40799-018-0271-0.
- Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2017), "An investigation of the seismic behaviour of an ancient masonry bastion using non-destructive and numerical methods", Exp. Mech., 57, 245-259. https://doi.org/10.1007/s11340-016-0239-x.
- Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2016), "Non-destructive testing of an ancient masonry bastion", J. Cult. Herit., 22, 1049-1054. https://doi.org/10.1016/j.culher.2016.05.008.
- Altunisik, A.C., Genc, A.F., Gunaydin, M., Adanur, S. and Okur, F.Y. (2018a), "Ambient vibration-based system identification of a medieval masonry bastion for health assessment using nonlinear analyses", Int. J. Nonlinear Sci., 19(2), 107-124. https://doi.org/10.1515/ijnsns-2017-0004.
- Altunisik, A.C., Genc, A.F., Gunaydin, M., Okur, F.Y. and Karahasan, O.S. (2018b), "Dynamic response of a historical armory building using the finite element model validated by the ambient vibration test", J. Vib. Control, 24(22), 5472-5484. https://doi.org/10.1177/1077546318755559.
- Altunisik, A.C., Okur, F.Y., Genc, A.F., Gunaydin, M. and Adanur, S. (2018c), "Automated model updating of historical masonry structures based on ambient vibration measurements", J. Perform. Constr. Fac., 32(1), 04017126. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001108.
- Aras, F., Krstevska, L., Altay, G. and Tashkov, L. (2011), "Experimental and numerical modal analyses of a historical masonry palace", Constr. Build. Mater., 25(1), 81-91. https://doi.org/10.1016/j.conbuildmat.2010.06.054.
- Bayraktar, A. and Hokelekli, E. (2020), "Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems", Soil Dynam. Earthq. Eng., 139, 106368. https://doi.org/10.1016/j.soildyn.2020.106368.
- Bayraktar, A., Hokelekli, E., Halifeoglu, F.M., Mosallam, A. and Karadeniz, H. (2018), "Vertical strong ground motion effects on seismic damage propagations of historical masonry rectangular minarets", Eng. Fail. Anal., 91, 115-128. https://doi.org/10.1016/j.engfailanal.2018.04.029.
- Bayraktar, A., Turker, T. and Altunisik, A.C. (2015), "Experimental frequencies and damping ratios for historical masonry arch bridges", Constr. Build. Mater., 75, 234-241. https://doi.org/10.1016/j.conbuildmat.2014.10.044.
- Bayraktar, A., Turker, T., Sevim, B., Altunisik, A.C. and Yildirim, F. (2009), "Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test", J. Nondestruct. Eval., 28(1), 37-47. https://doi.org/10.1007/s10921-009-0045-9.
- Bendat, J.S. and Piersol, A.G. (2004), Random Data: Analysis and Measurement Procedures, John Wiley and Sons, U.S.A.
- Betti, M. and Vignoli, A. (2008), "Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance", Eng. Struct., 30(2), 352-367. https://doi.org/10.1016/j.engstruct.2007.03.027.
- Betti, M. and Vignoli, A. (2011), "Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all'Impruneta (Italy)", Constr. Build. Mater., 25(12), 4308-4324. https://doi.org/10.1016/j.conbuildmat.2010.12.028.
- Bolhassani, M., Hamid, A.A., Lau, A.C.W. and Moon, F. (2015), "Simplifed micro modeling of partially grouted masonry assemblages", Constr. Build. Mater., 83, 159-173. https://doi.org/10.1016/j.conbuildmat.2015.03.021.
- Brown, S., Hwang, J.P. and Parker, A. (2012), "Assessment of masonry bell tower response to bell ringing using operational modal analysis and numerical modeling", Proceedings of Acoustics.
- Brownjohn, J.M., Xia, P.Q., Hao, H. and Xia, Y. (2001), "Civil structure condition assessment by FE model updating: Methodology and case studies", Finite Elem. Anal. Des., 37(10), 761-775. https://doi.org/10.1016/S0168-874X(00)00071-8.
- Butt, F. and Omenzetter, P. (2014), "Seismic response trends evaluation and finite element model calibration of an instrumented RC building considering soil-structure interaction and non-structural components", Eng. Struct., 65, 111-123. https://doi.org/10.1016/j.engstruct.2014.01.045.
- Carpinteri, A., Invernizzi, S. and Lacidogna, G. (2005), "In situ damage assessment and nonlinear modelling of a historical masonry tower", Eng. Struct., 27(3), 387-395. https://doi.org/10.1016/j.engstruct.2004.11.001.
- Ceroni, F., Sica, S., Pecce, M.R. and Garofano, A. (2014), "Evaluation of the natural vibration frequencies of a historical masonry building accounting for SSI", Soil Dynam. Earthq. Eng., 64, 95-101. https://doi.org/10.1016/j.soildyn.2014.05.003.
- Corum Baris Sehri (2018), Corum Il Kultur ve Turizm Mudurlugu, http://www.corum.gov.tr/kurumlar/corum.gov.tr/Genel/corum_tanitim/gezirehberi.pdf.
- Damci, E., Temur, R., Bekdas, G. and Sayin, B. (2015), "Damages and causes on the structures during the October 23, 2011 Van earthquake in Turkey", Case Stud. Constr. Mater., 3,112-131. https://doi.org/10.1016/j.cscm.2015.10.001.
- Ewins, D.J. (1984), Modal Testing: Theory and Practice, Letchworth, Hertfordshire, England, Research Studies Press, New York.
- Felber, A.J. (1993), "Development of hybrid bridge evaluation system", Ph.D. Thesis, University of British Columbia, Vancouver, Canada.
- Garcia-Macias, E. and Ubertini, F. (2020), "Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy", Eng. Struct., 215, 110615. https://doi.org/10.1016/j.engstruct.2020.110615.
- General Directorate for Foundations (2017), Guide to the Management of Earthquake Risks of Historical Structures, Ankara, Turkey.
- General Directorate for Foundations (2018), Turkey Earthquake Building Code, TEBC-2018, Ankara, Turkey.
- Gentile, C. and Saisi, A. (2007), "Ambient vibration testing of historic masonry towers for structural identification and damage assessment", Constr. Build. Mater., 21(6), 1311-1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007.
- Gunaydin, M., Adanur, S. and Altunisik, A.C. (2019), "Experimental investigation on acceptable difference value in modal parameters for model updating using RC building models", Struct. Eng. Int., 29(1), 150-159. https://doi.org/10.1080/10168664.2018.1517019.
- Gunaydin, M., Adanur, S., Altunisik, A.C., Sevim, B. and Bayraktar, A. (2017), "Finite modeling updating effects on the dynamic response of building models", J. Test. Eval., 45(5), 2017,1630-1649. https://doi.org/10.1520/JTE20150515.
- Hokelekli, E. and Al-Helwani, A. (2019), "Effect of soil properties on the seismic damage assessment of historical masonry minaret-soil interaction systems", Struct. Des. Tall Spec., 29(2). https://doi.org/10.1002/tal.1694.
- Jacobsen, N.J., Andersen, P. and Brincker, R. (2006), "Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis", Proceedings of ISMA2006: International Conference on Noise & Vibration Engineering, Leuven, Belgium.
- Jain, A., Acito, M. and Chesi, C. (2020), "Seismic sequence of 2016-17: Linear and non-linear interpretation models for evolution of damage in San Francesco Church, Amatrice", Eng. Struct., 211, 397-421. https://doi.org/10.1016/j.engstruct.2020.110418.
- Jain, A., Acito, M., Chesi, C. and Magrinelli, E. (2019), "The seismic sequence of 2016-2017 in Central Italy: A numerical insight on the survival of the Civic Tower in Amatrice", B. Earthq. Eng., 18, 1371-1400. https://doi.org/10.1007/s10518-019-00750-w.
- Juang, J.N. (1994), Applied System Identification, Englewood Cliffs (NJ): Prentice-Hall Inc.
- Kramer, S.L. (1999), Geotechnical Earthquake Engineering, University of Washington, U.S.A.
- Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dynam., 27(9), 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5.
- Leger, P. and Boughoufalah, M. (1989), "Earthquake input mechanisms for time-domain analysis of dam-foundation systems", Eng. Struct., 11(1), 37-46. https://doi.org/10.1016/0141-0296(89)90031-X.
- Li, T. and Atamturktur, S. (2014), "Fidelity and robustness of detailed micromodeling, simplified micromodeling, and macromodeling techniques for a masonry dome", J. Perform. Constr. Fac., 28(3), 480-490. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000440.
- Lourenco, P.B. (1996), "Computational strategies for masonry structures", Ph.D. Thesis, Delft University of Technology, Delft, Netherland.
- Lourenco, P.B. (2002), "Computations on historic masonry structures", Prog. Struct. Eng. Mater., 4(3), 301-319. https://doi.org/10.1002/pse.120.
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
- Mohammadnezhad, H., Ghaemian, M. and Noorzad, A. (2019), "Seismic analysis of dam-foundation-reservoir system including the effects of foundation mass and radiation damping", Earthq. Eng. Eng. Vib., 18(1), 203-218. https://doi.org/10.1007/s11803-019-0499-4.
- Nohutcu, H. (2019), "Seismic failure pattern prediction in a historical masonry minaret under different earthquakes", Adv. Civil Eng., 2019(1), 1-16. https://doi.org/10.1155/2019/8752465.
- Nohutcu, H., Hokelekli, E., Ercan, E., Demir, A. and Altintas, G. (2017), "Collapse mechanism estimation of a historical slender minaret", Struct. Eng. Mech., 64(5), 653-660. https://doi.org/10.12989/sem.2017.64.5.653.
- OMA (2006), Release 4.0, Structural Vibration Solution A/S, Denmark.
- Peeters, B. (2000), "System identification and damage detection in civil engineering", Ph.D. Thesis, Catholic University of Leuven, Leuven, Belgium.
- Peeters, B. and De Roeck, G. (1999), "Reference based stochastic subspace identification in civil engineering", Proceedings of the 2nd International Conference on Identification in Engineering Systems, Swansea, UK.
- Pena, F., Lourenco, P.B., Mendes, N. and Oliveira, D.V. (2010), "Numerical models for the seismic assessment of an old masonry tower", Eng. Struct., 32(5), 1466-1478. https://doi.org/10.1016/j.engstruct.2010.01.027.
- PULSE, A. and Solutions, R. (2006), 11.2, Bruel & Kjaer, Sound Vib. Meas. A/S, Denmark.
- Rainieri, C., Fabbrocino, G., Cosenza, E. and Manfredi, G. (2007), "Implementation of OMA procedures using labview: Theory and application". 2nd International Operational Modal Analysis Conference, Copenhagen, Denmark.
- Ramos, L.F., Aguilar, R. and Lourenco, P.B. (2011), "Operational modal analysis of historical constructions using commercial wireless platforms", Struct. Health Monit., 10(5), 511-521. https://doi.org/10.1177/1475921710388973.
- Ren, W.X., Penga, X. and Lina, Y. (2005), "Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge", Eng. Struct., 27(4), 535-548. https://doi.org/10.1016/j.engstruct.2004.11.013.
- Republic of Turkey Prime Ministry Disaster and Emergency Management Authority Presidential of Earthquake Department (2018), https://deprem.afad.gov.tr/depremkatalogu#.
- Resta, M., Fiore, A. and Monaco, P. (2013), "Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model", Adv. Struct. Eng., 16(5), 791-803. https://doi.org/10.1260/1369-4332.16.5.791.
- Romero, M., Pachon, P., Compan, V., Camara, M. and Pinto, F. (2018), "Operational modal analysis: A tool for assessing changes on structural health state of historical constructions after consolidation and reinforcement works-Jura Chapel (Jerez De La Frontera, Spain)", Shock Vib., 2018, 1-12. https://doi.org/10.1155/2018/3710419.
- Saisi, A., Gentile, C. and Guidobaldi, M. (2015), "Post-earthquake continuous dynamic monitoring of the Gabbia Tower in Mantua, Italy", Constr. Build. Mater., 81, 101-112. https://doi.org/10.1016/j.conbuildmat.2015.02.010.
- Saloustros, S., Pela, L., Roca, P. and Portal, J. (2015), "Numerical analysis of structural damage in the church of the Poblet monastery", Eng. Fail. Anal., 48, 41-61. https://doi.org/10.1016/j.engfailanal.2014.10.015.
- Sanayei, M. and Rohela, P. (2014), "Automated finite element model updating of full-scale structures with PARameter Identification System (PARIS)", Adv. Eng. Softw., 67, 99-110. https://doi.org/10.1016/j.advengsoft.2013.09.002.
- Sevim, B, Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlinear Dynam., 63(4), 755-770. https://doi.org/10.1007/s11071-010-9835-y.
- Sorour, M.M., Parsekian, G.A., Duchesne, D., Paquette, J., Mufti, A., Jaeger, L. and Shrive, N.G. (2009), "Evaluation of Young's modulus for stone masonry walls under compression", 11th Canadian Masonry Symposium, Toronto, Ontario.
- Tiberti, S., Acito, M. and Milani, G. (2016), "Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis", Eng. Struct., 117, 397-421. https://doi.org/10.1016/j.engstruct.2016.02.048.
- Turek, M., Ventura, C.E. and Placencia, P. (2002), "Dynamic characteristics of a 17th century church in Quito, Ecuador", Proceedings of SPIE, 4753(2), 1259-1264.
- Votsis, R.A., Kyriakides, N., Chrysostomou, C.Z., Tantele, E. and Demetriou, T. (2012), "Ambient vibration testing of two masonry monuments in Cyprus", Soil Dynam. Earthq. Eng., 43, 58-68. https://doi.org/10.1016/j.soildyn.2012.07.015.
- Wu, J.R. and Li, Q.S. (2004), "Finite element model updating for a high-rise structure based on ambient vibration measurements", Eng. Struct., 26(7), 979-990. https://doi.org/10.1016/j.engstruct.2004.03.002.