Acknowledgement
The authors are very grateful for the referee's efforts and valuable comments, which improved the article and brought it this way.
References
- E. Abuosba and O. Alkam, When zero-divisor graphs are divisor graphs, Turkish J. Math. 41 (2017), no. 4, 797-807. https://doi.org/10.3906/mat-1601-102
- E. Abuosba and M. Ghanem, Annihilating content in polynomial and power series rings, J. Korean Math. Soc. 56 (2019), no. 5, 1403-1418. https://doi.org/10.4134/JKMS.j180698
- D. D. Anderson, E. Abuosba, and M. Ghanem, Annihilating content polynomials and EM-rings, To appear in J. Algebra and its Application; https://doi.org/10.1142/S021949882250092X
- F. Azarpanah, E. Ghashghaei, and M. Ghoulipour, C(X): something old and something new, Comm. Algebra 49 (2021), no. 1, 185-206. https://doi.org/10.1080/00927872.2020.1797070
- J. G. Brookshear, Projective ideals in rings of continuous functions, Pacific J. Math. 71 (1977), no. 2, 313-333. http://projecteuclid.org/euclid.pjm/1102811430 https://doi.org/10.2140/pjm.1977.71.313
- G. De Marco, On the countably generated z-ideals of C(X), Proc. Amer. Math. Soc. 31 (1972), 574-576. https://doi.org/10.2307/2037574
- M. Ghanem and E. Abu Osba, Some extensions of generalized morphic rings and EMrings, An. S,tiint,. Univ. "Ovidius" Constant,a Ser. Mat. 26 (2018), no. 1, 111-123. https://doi.org/10.2478/auom-2018-0007
- L. Gillman and M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391. https://doi.org/10.2307/1993054
- L. Gillman and M. Jerison, Rings of Continuous Functions, reprint of the 1960 edition, Springer-Verlag, New York, 1976.
- M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.2307/1994260
- M. Henriksen, J. Vermeer, and R. G. Woods, Quasi F-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), no. 2, 779-803. https://doi.org/10.2307/2000697
- M. Henriksen and R. G. Woods, Cozero complemented spaces; when the space of minimal prime ideals of a C(X) is compact, Top. Appl. 141 (2004), 147-170. https://doi.org/10.1016/j.topol.2003.12.004
- R. Levy, Almost-P-spaces, Canadian J. Math. 29 (1977), no. 2, 284-288. https://doi.org/10.4153/CJM-1977-030-7
- C. W. Neville, When is C(X) a coherent ring?, Proc. Amer. Math. Soc. 110 (1990), no. 2, 505-508. https://doi.org/10.2307/2048096