DOI QR코드

DOI QR Code

A HOMOLOGICAL CHARACTERIZATION OF PRÜFER v-MULTIPLICATION RINGS

  • Zhang, Xiaolei (School of Mathematics and Statistics Shandong University of Technology)
  • Received : 2021.03.27
  • Accepted : 2021.10.14
  • Published : 2022.01.31

Abstract

Let R be a ring and M an R-module. Then M is said to be regular w-flat provided that the natural homomorphism I ⊗R M → R ⊗R M is a w-monomorphism for any regular ideal I. We distinguish regular w-flat modules from regular flat modules and w-flat modules by idealization constructions. Then we give some characterizations of total quotient rings and Prüfer v-multiplication rings (PvMRs for short) utilizing the homological properties of regular w-flat modules.

Keywords

Acknowledgement

The author was supported by the National Natural Science Foundation of China (No. 12061001).

References

  1. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  2. A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
  3. S. Bazzoni and S. Glaz, Gaussian properties of total rings of quotients, J. Algebra 310 (2007), no. 1, 180-193. https://doi.org/10.1016/j.jalgebra.2007.01.004
  4. G. W. Chang and H. Kim, The w-FF property in trivial extensions, Bull. Iranian Math. Soc. 43 (2017), no. 7, 2259-2267.
  5. J. Elliott, Rings, modules, and closure operations, Springer Monographs in Mathematics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-24401-9
  6. W. Fanggui and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
  7. J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  8. J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math. 31 (1980), no. 1-3, 167-196. https://doi.org/10.1007/BF01303273
  9. T. G. Lucas, Strong Prufer rings and the ring of finite fractions, J. Pure Appl. Algebra 84 (1993), no. 1, 59-71. https://doi.org/10.1016/0022-4049(93)90162-M
  10. T. G. Lucas, Krull rings, Prufer v-multiplication rings and the ring of finite fractions, Rocky Mountain J. Math. 35 (2005), no. 4, 1251-1325. https://doi.org/10.1216/rmjm/1181069687
  11. R. Matsuda, Notes of Prufer v-multiplication rings, Bull. Fac. Sci. Ibaraki Univ. Ser. A No. 12 (1980), 9-15. https://doi.org/10.5036/bfsiu1968.12.9
  12. F. G. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9. https://doi.org/10.3969/j.issn.1001-8395.2010.01.001
  13. F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
  14. F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa.2014.07.025
  15. F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  16. F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327-1338. https://doi.org/10.4134/BKMS.2015.52.4.1327
  17. F. G. Wang and D. C. Zhou, A homological characterization of Krull domains, Bull. Korean Math. Soc. 55 (2018), no. 2, 649-657. https://doi.org/10.4134/BKMS.b170203
  18. F. G. Wang, D. C. Zhou, H. Kim, T. Xiong, and X. W. Sun, Every Prufer ring does not have small finitistic dimension at most one, Comm. Algebra 48 (2020), no. 12, 5311-5320. https://doi.org/10.1080/00927872.2020.1787422
  19. X. L. Xiao, F. G. Wang, and S. Y. Lin, The coherent study determined by regular ideals, J. Sichuan Normal Univ., Accepted.
  20. H. Yin, Some characterizations of Prufer v-multiplication rings, J. Math. Res. Appl. 34 (2014), no. 3, 295-300.
  21. H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
  22. X. Zhang, F. Wang, and W. Qi, On characterizations of w-coherent rings, Comm. Algebra 48 (2020), no. 11, 4681-4697. https://doi.org/10.1080/00927872.2020.1769121
  23. X. Zhang and W. Zhao, On ϕ-w-flat modules and their homological dimensions, Bull. Korean Math. Soc. 58 (2021), no. 4, 1039-1052. https://doi.org/10.4134/BKMS.b200816