Acknowledgement
The author was supported by the National Natural Science Foundation of China (No. 12061001).
References
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
- S. Bazzoni and S. Glaz, Gaussian properties of total rings of quotients, J. Algebra 310 (2007), no. 1, 180-193. https://doi.org/10.1016/j.jalgebra.2007.01.004
- G. W. Chang and H. Kim, The w-FF property in trivial extensions, Bull. Iranian Math. Soc. 43 (2017), no. 7, 2259-2267.
- J. Elliott, Rings, modules, and closure operations, Springer Monographs in Mathematics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-24401-9
- W. Fanggui and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
- J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math. 31 (1980), no. 1-3, 167-196. https://doi.org/10.1007/BF01303273
- T. G. Lucas, Strong Prufer rings and the ring of finite fractions, J. Pure Appl. Algebra 84 (1993), no. 1, 59-71. https://doi.org/10.1016/0022-4049(93)90162-M
- T. G. Lucas, Krull rings, Prufer v-multiplication rings and the ring of finite fractions, Rocky Mountain J. Math. 35 (2005), no. 4, 1251-1325. https://doi.org/10.1216/rmjm/1181069687
- R. Matsuda, Notes of Prufer v-multiplication rings, Bull. Fac. Sci. Ibaraki Univ. Ser. A No. 12 (1980), 9-15. https://doi.org/10.5036/bfsiu1968.12.9
- F. G. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9. https://doi.org/10.3969/j.issn.1001-8395.2010.01.001
- F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
- F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa.2014.07.025
- F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327-1338. https://doi.org/10.4134/BKMS.2015.52.4.1327
- F. G. Wang and D. C. Zhou, A homological characterization of Krull domains, Bull. Korean Math. Soc. 55 (2018), no. 2, 649-657. https://doi.org/10.4134/BKMS.b170203
- F. G. Wang, D. C. Zhou, H. Kim, T. Xiong, and X. W. Sun, Every Prufer ring does not have small finitistic dimension at most one, Comm. Algebra 48 (2020), no. 12, 5311-5320. https://doi.org/10.1080/00927872.2020.1787422
- X. L. Xiao, F. G. Wang, and S. Y. Lin, The coherent study determined by regular ideals, J. Sichuan Normal Univ., Accepted.
- H. Yin, Some characterizations of Prufer v-multiplication rings, J. Math. Res. Appl. 34 (2014), no. 3, 295-300.
- H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
- X. Zhang, F. Wang, and W. Qi, On characterizations of w-coherent rings, Comm. Algebra 48 (2020), no. 11, 4681-4697. https://doi.org/10.1080/00927872.2020.1769121
- X. Zhang and W. Zhao, On ϕ-w-flat modules and their homological dimensions, Bull. Korean Math. Soc. 58 (2021), no. 4, 1039-1052. https://doi.org/10.4134/BKMS.b200816