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FURTHER RESULTS ON BIASES IN INTEGER PARTITIONS

SHANE CHERN

ABSTRACT. Let pg p,m(n) be the number of integer partitions of n with
more parts congruent to a modulo m than parts congruent to b modulo m.
We prove that pg p,m (1) > Py,a,m(n) whenever 1 < a < b < m. We also
propose some conjectures concerning series with nonnegative coefficients
in their expansions.

1. Introduction

In analogy to Chebyshev’s bias [3] concerning the excess of the number of
primes of the form 4k 4 3 over the number of primes of the form 4k + 1,
B. Kim, E. Kim, and J. Lovejoy [5] introduced a phenomenon called parity bias
for integer partitions.

Theorem 1.1 (B. Kim, E. Kim, and J. Lovejoy). Let po(n) (resp. pe(n))
denote the number of integer partitions of n with more odd parts than even
parts (resp. with more even parts than odd parts). Then

Po(n) > pe(n).

This phenomenon is called “parity bias” for integer partitions.

Recently, B. Kim and E. Kim [4] went on to investigate this phenomenon in
a more general setting. Let us first adopt their notation.

Definition. We denote by pg p.m(n) the number of partitions of n with more
parts congruent to a modulo m than parts congruent to b modulo m.

Making use of the above notation, we have p,(n) = p1,2,2(n) and pe(n) =
p2,1,2(n) and therefore arrive at the inequality p1 2 2(n) > p2.1,2(n) from Theo-
rem 1.1. Similar phenomena shown in [4] also include inequalities as follows.

Theorem 1.2 (B. Kim and E. Kim). Let m > 2 be an integer. Then
pl,m,m(n) 2 pm,l,m(n)u
mefl,m(n) 2 pmfl,l,m(n)
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Our object here is to extend the above results for general py p.m(n).

Theorem 1.3. Let m > 2 be an integer. For any two integers a and b with
1<a<b<m, we have

(1) pa,b,m(n) Z pb,a,m(n)-

We separate this theorem into two cases. First, we prove the case (a,b) #

(1,2) using g-series manipulations. Then we provide an injective proof for
(a,b) = (1,2).

2. Case (a,b) # (1,2)

Let us first recall the notation of g-Pochhammer symbols: for n € NU {0},
n—1
(A;q)n == [J(1 - Ag"),
k=0
(Ala A2> o aAm; q)n = (Al; q)n(AQa q)n T (Am, q)n

Next, given an integer partition A, we denote by |A| the sum of parts in A and
by f4.m(A) the number of parts in A that are congruent to a modulo m. Let &7
be the set of integer partitions.

Our starting point is the following trivial trivariate generating function:

a b. m
2) S ghenNyinn (gl — (", 4":4™ )0 1 ’
= (@00 (24%¥q" 4™ oo
provided that 1 < a,b <m and a # b.
We are then led to the following lemma.

Lemma 2.1. Let 1 < a,b<m and a #b. We have

3 (4", 4" 4™ > i
3 Pa,b,m\N q" = .
@) bm(7) () Az (@™q™)i(d™:q™);

n>0

i>j
Proof. Recall Euler’s first identity [2, p. 19, (2.2.5)]:

(4) 1 :Z(z

(@) (@GO

n

Setting y = ! in (2) yields
3 gt Nt gl
\ep
(4%, 4% 4™ 1
(@) (2¢%, 271¢% ¢™) oo

(qa’qb;qm)oo Z qu‘“ Z :zqubj ) )
- - m. m —_— (by using (4) twice)
(qa q)oo ; (q q )i =0 (q ;1 q )j
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( a’ . 1 m—&-bj

W 5

zy>(] q 4 )

Noticing that pgpm(n) counts the number of partitions A of n such that
Ba,m(A) > fp.m(X), we must single out terms in the above with positive expo-
nents in x and therefore terms with ¢+ — 7 > 0. The desired result immediately
follows. O

Now, we are in a position to prove Theorem 1.3 for (a,b) # (1, 2).

Proof of Theorem 1.3 for (a,b) # (1,2). Recall that 1 < a < b < m. The
following is a simple consequence of Lemma 2.1:

Z (pa,b,m(n) - pb,a,m(n))qn

n>0

(q q q )oo q‘”“’” gbirad
= > T

m)i(@™ig™);  (am5a™)i(a™ am);

4,720
i>]
_ (g% q )oo q‘““” 1—q MMM
(¢; 5= ™)ila™sq™);
i>]
(¢%, q ") ZZ qa(1+k)+bJ(1 — qb—a)k)
@0~ §>0 k>1 i@ q™ )k

We then consider two subcases.
Subcase I. a # 1. Noticing that (b — a)k is always a positive integer, we
may factor 1 — ¢~ as (1 — ¢)(1 +q+¢>+--- + ¢®~¥*=1). Thus,

Z (pa,b,m(n) - pb,a,m(n))qn
n>0

(1_(1)((] 4" g™ OOZZ qa(]+k)+b](1+q—|—q +...+q(b—a)k—1)
(43 2)o0 >0 k>1 (@™5a™); (@™ q™)j+k

Apparently, the Taylor expansion of the double series in the above has nonneg-
ative coefficients. For the infinite product in the above, we have, as 2 < a <
b<m,

(1-9" "0 (¢%4" 0™

(¢ 9) o0 (4% @)oo
which also has nonnegative coefficients in its series expansion. We therefore
conclude that py p.m (1) > Ppa,m(n) for a # 1.
Subcase II. a = 1 and b # 2. We have

> (Prom(n) = prim(m)q" = q’q q WZZ

n>0 J>0k>1 aq 7q )]"rk

)

q(1+k)+bJ 1 — gl 1)k)
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Notice that b > a = 1. This time we should factor 1 —¢(®*=D* as (1 —¢*=1)(1 +
@44 O DED) Thys,

Z (pl,b,m(n) — Pb,1,m (n))qn
n>0

_ (1=¢""(2,¢" 4 33 q(”’“)“” Lg" ' 4 4 gD
(Q7 J>0k>1 qu"l)](q 7 4 )j+k .

Similarly, the double series in the above can be expanded as a nonnegative
series in ¢q. Also, as b # 2, we have 1 < b— 1 < b < m. This implies that the
infinite product part in the above is also a nonnegative series in ¢q. Therefore,

P1.b,m (M) > Po1,m(n) for b # 2. 0

3. Case (a,b) = (1,2)

When (a,b) = (1,2), it looks like a g-theoretic proof is painfully difficult.
Therefore, we consider this case in a combinatorial manner. First, for d € Z,
we define

Pan) = 27 () == {A e Z: |\ =nand t1m(N) — tom(N) = d}.
Then
(5) p1.2.m(n) = anrd P4(n)
d>1
(6) P2,1,m (N anrdgZ
d>1

Our object is to show the following inequalities, from which our desired
result p1,2.m(n) > p2.1,m(n) follows as a direct consequence if we make use of
the above two relations.

Theorem 3.1. Let m > 3 be an integer. For k > 0,

(7) card Z_ (m+1)(n) < card Pppnq2(n),
(8) card Z_ (pm+2)(n) < card Pppmq1(n),
(9) card Z_ (pm4r)(n) < card P, (n),

where 3 < r < m in the third inequality.

Proof. We simply construct injections &Z_g(n) < Pg«(n) for d =km+r >0
with 1 <r <m and

km+2 ifr=1,
d*=<km+1 ifr=2,
km4+r if3<r<m.

Given any partition A, we start with the following process.
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Process (I). We replace any part in A that is congruent to 1 modulo m,
say um + 1, by um + 2 and replace any part in A that is congruent to 2 modulo
m, say vm + 2, by vm + 1. The resulting partition is called \*.

Now, if A € Z_4(n), then #i 1, (A) — f2,m(X) = —d. Also, trivially,

A=A —-d=n-—d.
Thus, to arrive at a partition of size n, we need to append some additional
parts that sum to d. We have three subcases.

Subcase I. 3 < r < m. Recall that d = km + r. We append a part of size
d to A\* and call the new partition A**. Since d #Z 1,2 (mod m), we have

f1,m (A7) = B2m (A™) = B1m (A7) — f2,m (A7)
= ﬁ27m )‘) - Ijl,m()‘) (by Process (I))
= ~(~d)
=d".
Thus, \** € Py« (n).
Subcase II. r = 1. Recall that d = km + 1. We append a part of size

1 and a part of size km to A* and call the new partition A**. Notice that
km=0=%1,2 (mod m) for m > 3. Thus,

B1,m (A7) = f2,m (A7) = (14 f1,m(A")) — f2,m (A7)
=1+4+t2.m(A) —f1.m(A) (by Process (I))
=1—(=d)
=km+2
= d*,
which implies that A** € Py« (n).
Subcase III. r = 2. Recall that d = km + 2. We append a part of size

2 and a part of size km to A\* and call the new partition A**. We also have
km =0% 1,2 (mod m) for m > 3. Thus,

B1,m (A7) = 2, (A7) = f1,m (A°) = (14 f2,m (X))
=—1+t2m(A) —t1.m(A) (by Process (I))
— —1—(~d)
=km+1
= d*’
and therefore, A\** € Py« (n).
Lastly, it is straightforward to verify that the map A — A** is injective. [

Proof of Theorem 1.3 for (a,b) = (1,2). For m = 2, see Theorem 1.1 due to
B. Kim, E. Kim and Lovejoy. For m > 3, we have

p2am(n) =Y card Z_q(n) (by (6))

d>1
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= Z card Z_ (jm41)(n) + Z card Z_ (jm42)(n)

k>0 k>0
+ Z Z card z@,(karr) (n)
3<r<m k>0
< Z card Pm42(n) + Z card Pim+1(n)
k>0 k>0
+ Z Z card Pm4r(n) (by Theorem 3.1)
3<r<m k>0
= Z card Z;4(n)
d>1
=pr2m(n). (by (5))
This is exactly what we need. O

4. Closing remarks

Following Section 2, the case (a,b) = (1,2) of Theorem 1.3 is equivalent to
the nonnegativity of

(10) (i) oy

Sy @msam)(amam)

3j+k 1 _ qk)

that is, its series expansion has nonnegative coeflicients. Although we do not
find a g-theoretic proof of this fact, our numerical calculations indicate the
following conjecture.

Conjecture 4.1. For m > 2, the double series

(11) ZZ

cam) .
_]>0k>1 7q 7q )J+k‘

g 1—q)

has nonnegative coefficients in its expansion.
Notice that
33

_ q ¢"(1 - q*)
Z Z - Z (qm7 qm j(qm; qm)J kzzo (q(j+1)rrL;qrrL)k .

>0 k>1 @™ q™)j+ >0 )

¢IHR(L — ¢*)

Regarding the inner series, we also have a more surprising conjecture.
Conjecture 4.2. For m,s > 1,

(12) Z ¢"(

k>0

has nonnegative coefficients in its expansion.

Here the case s = m is to some extent easier.
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Proof of Conjecture 4.2 for s =m. We have

q* 1—q
,;) qm)k ,g)(q g™ 222 m;gm

1 1
T (60w (@) e (by (4))

=Y pm(m)q" = pam(n)g",

n>0 n>0

where for i = 1 or 2, we denote by p; ,(n) the number of partitions of n with
parts of the form km + ¢ with £ > 0.

Now we recall a result due to Andrews [1, Theorem 3]:

Let S = {a;}i>1 and T = {b;};>1 be two strictly increasing sequences of
positive integers such that by =1 and a; > b; for all i. Then for any n > 0,

pr(n) = ps(n),
where pg(n) (resp. pr(n)) denotes the number of partitions of n into parts taken
from S (resp. T).
By the above theorem, we immediately have p1 m,(n) > pa2m(n) for all n.
Thus, (12) is a nonnegative series in ¢ when s = m. O
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