DOI QR코드

DOI QR Code

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas (The Iraqi Ministry of Agriculture) ;
  • Naida, Ademovic (Faculty of Civil Engineering, University of Sarajevo) ;
  • Husain K., Jarallah (Department of Civil Engineering, College of Engineering, Mustansiriyah University)
  • Received : 2022.10.03
  • Accepted : 2022.12.05
  • Published : 2022.12.25

Abstract

EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.

Keywords

Acknowledgement

The authors would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad - Iraq for its support in the present work.

References

  1. Abass, H.A. and Jarallah, H.K. (2021), "Seismic evaluation and retrofitting of an existing buildings-state of the art", Al-Nahrain J. Eng. Sci., 24(1), 52-75. https://doi.org/10.29194/NJES.24010052.
  2. Cho, C.G., Han, B.C., Lim, S.C., Morii, N. and Kim, J.W. (2018), "Strengthening of reinforced concrete columns by highperformance fibre-reinforced cementitious composite (HPFRC) sprayed mortar with strengthening bars", Compos. Struct, 202, 1078-1086. https://doi.org/10.1016/j.compstruct.2018.05.045.
  3. Cadoni, E.I, Meda, A. and Plizzari G.A. (2009), "Tensile behaviour of FRC under high strain-rate", Mater. Struct., 42(9), 1283-1294. https://doi.org/10.1617/s11527-009-9527-6.
  4. China Manufacturers/Suppliers, https://benjinxin.en.made-inchina.com.
  5. Dashtaki, S.S., Ventura, C.E. and Banthia, N. (2017), "Seismic strengthening of unreinforced masonry walls using sprayable eco-friendly ductile cementitious composite (EDCC)", Procedia Eng., 210, 154-164. https://doi.org/10.1016/j.proeng.2017.11.061.
  6. Dashtaki, S.S., Soleimani, S., Wang, Q., Banthia, N. and Ventura, C.E. (2017), "Effect of high strain-rates on the tensile constitutive response of eco-friendly ductile cementitious composite (EDCC)", Procedia Eng., 210, 93-104. https://doi.org/10.1016/j.proeng.2017.11.053.
  7. Fischer, G. and Li, V.C. (2003b), "Intrinsic response control of moment resisting frames utilizing advanced composite materials and structural elements", ACI Struct. J., 100(2), 166-176.
  8. Hamid, A.A., El-Dakahakhni, W.W., Hakam, H.R. and El Gally, M. (2005), "Behavior of composite unreinforced masonry-fiberreinforced polymer wall assemblages under in-plane loading", J. Compos. Constr., 9(1), 73-83. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(73)
  9. Han, T.S., Feenstra, P.H. and Billington, S.L. (2003), "Simulation of ductile fiber-reinforced cement-based composites", ACI Struct. J., 100(6), 749-757.
  10. Jarallah, H.K., Paul, D.K. and Singh, Y. (2020), "Seismic evaluation and retrofit on an existing hospital building", J. Eng. Sustain. Dev., 24(6), 1-21. https://doi.org/10.31272/jeasd.24.6.1.
  11. Jalal-Uddin, A., Araki, J., Gotoh, Y. and Takatera, M. (2011), "A novel approach to reduce fibrillation of PVA fibres using cellulose whiskers", Text. Res. J., 81(5), 447-458. https://doi.org/10.1177/0040517511399967.
  12. Kabele, P. (2001), "Assessment of structural performance of engineered cementitious composites by computer simulation", CTU Reports, 4(5), Faculty of Civil Engineering, Czech Technical University, Prague.
  13. Kyriakides, M.A. and Billington, S.L. (2008), "Seismic retrofit of masonry non-ductile reinforced concrete frames using sprayable ductile fiber-reinforced cementitious composites", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
  14. Kyriakides, M.A. (2011), "Seismic Retrofit of Unreinforced Masonry Infills in Non-Ductile Reinforced Concrete Frames Using Engineered Cementitious Composites", Ph.D Dissertation, Stanford University, Standford, California, USA.
  15. Lynch, M.E. (2018), "Compressive and flexural performance of masonry strengthened with eco-friendly cementitious composites (EDCC)", Ph.D Dissertation, University of Manitoba, Winnipeg.
  16. Li, V.C. and Leung, C.K.Y. (1992), "Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites", ASCE J. Eng. Mech., 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  17. Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI Mater. J., 98(6), 483-492.
  18. Li, V.C., Lepech, M., Wang, S., Weimann, M. and Keoleian, G. (2004), "Development of green engineered cementitious composites for sustainable infrastructure systems", Proceedings of International Workshop on Sustainable Development and Concrete Technology, Beijing, China, May.
  19. Li, V.C. and Kanda, T. (1998), "Engineered cementitious composites for structural applications", ASCE J. Mater. Civil Eng., 10(2), 66-69. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:2(66)
  20. Mander, J.B., Aycardi, L.E., and Kim, D.K. (1994), "Physical and analytical modeling of brick infilled steel frames", Proceedings of the NCEER Workshop on Seismic of Masonry Infills, San Francisco, USA, February.
  21. Rebeiz, S. (1995), "Time-temperature properties of polymer concrete using recycled PET", Cement Concrete Compos., 17(2), 119-124. https://doi.org/10.1016/0958-9465(94)00004-I.
  22. Sasi, A. and Varghese, S.M. (2020), "Review on seismic strengthening using eco-friendly ductile cementitious composites", Int. Res. J. Eng. Technol., 7(5), 7965-7968.
  23. Triantafillou, T.C. (1998), "Strengthening of masonry structures using epoxy-bonded FRP laminates", ASCE J. Compos. Constr., 2(2), 96-104. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(96).
  24. Wang, S. and Li, V.C. (2007), "Engineered cementitious composites with high-volume fly ash", ACI Mater. J., 104(3), 233-241.
  25. Yoon, J.K. and Billington, S.L. (2002), "Cyclic response of unbonded post-tensioned precast columns with ductile fiberreinforced concrete", ASCE J. Bridge Eng., 9(4), 353-363. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:4(353).