DOI QR코드

DOI QR Code

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata (Department of Basic and Applied Sciences, Punjabi University) ;
  • Himanshi, Himanshi (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2022.08.07
  • Accepted : 2022.11.29
  • Published : 2022.12.25

Abstract

The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.

Keywords

References

  1. Abbas, I.A., El-Amin, M.F. and Salama, A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Fl., 30(2), 229-236. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.
  2. Abbas, I.A. (2014), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.
  3. Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. https://doi.org/10.1134/S102995991802008X.
  4. Abbas, I.A. and Marin, M. (2018), "Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse", Iran J. Sci. Technol. T. Mech. Eng., 42(1), 57-71. https://doi.org/10.1007/s40997-017-0077-1.
  5. Abouelregal, A.E., Elhagary, M.A., Soleiman, A. and Khalil, K.M. (2022), "Generalized thermoelastic-diffusion model with higher-order fractional order time-derivatives and four-phase-lags", Mech. Based Des. Struc., 50(3). https://doi.org/10.1080/15397734.2020.1730189.
  6. Abd-Alla, A.N. and Abbas, I.A. (2002), "A problem of generalized magneto-thermoelasticity for an infinitely long, perfectly conducting cylinder", J. Therm. Stresses, 25(11), 1009-1025. https://doi.org/10.1080/01495730290074612.
  7. Abd-Alla, A.M., Abo-Dahab, S.M. and Khan, A. (2017), "Rotational effects on magneto-thermoelastic Stoneley, Love, and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order", Comput. Mater. Continua, 53(1), 49-72.
  8. Abo-Dahab, S.M. (2015), "Propagation of Stoneley waves in magneto-thermoelastic materials with voids and two relaxation times", J. Vib. Control, 21(6), 1144-1153. https://doi.org/10.1177/1077546313493651.
  9. Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., 23(3), 217-225. https://doi.org/10.12989/gae.2020.23.3.217.
  10. Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model", J. Therm. Stresses, 40(4), 403-419. https://doi.org/10.1080/01495739.2017.1283971.
  11. Biswas, S. and Abo-Dahab, S.M. (2020), "Three dimensional thermal shock problem in orthotropic medium", J. Solid Mech., 12(3), 663-680. https://doi.org/10.22034/jsm.2020.1885944.1530.
  12. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  13. Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent-II", Geophys. J. Roy. Astronomical Soc., 13, 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  14. Chadwick, P. and Windle, D.W. (1964), "Propagation of Rayleigh waves along isothermal and insulated boundaries", Proceeding of the Royal Society of London, 280, 47-71.
  15. Das, P. and Kanoria, M. (2014), "Study of finite thermal waves in a magnetothermoelastic rotating medium", J. Therm. Stress, 37(4), 405-428. https://doi.org/10.1080/01495739.2013.870847.
  16. Deswal, S. and Kalkal, K.K. (2014), "Plane waves in a fractional order micropolar magneto-thermoelastic half-space", Wave Motion, 51(1), 100-113. https://doi.org/10.1016/j.wavemoti.2013.06.009.
  17. Ezzat, M.A. (2020), "Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source", Geomech. Eng., 23(4), 393-404. https://doi.org/10.12989/gae.2020.23.4.393.
  18. Hooda, R. and Gulia, S. (2019), "Mathematical modelling of stoneley wave in rotating orthotropic micropolar elastic solid media", IOSR J. Eng., 9(1), 48-54.
  19. Hobiny, A.D. and Abbas, I.A. (2017), "A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity", Mech. Time-Depend. Mat., 21(1), 61-72. https://doi.org/10.1007/s11043-016-9318-8.
  20. Hobiny, A. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Results Phys., 10, 385-390. https://doi.org/10.1016/j.rinp.2018.06.035.
  21. Horrigue, S. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimensional fiber-reinforced anisotropic material", Mathematics, 8(9), 1609. https://doi.org/10.3390/math8091609.
  22. Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. https://doi.org/ 10.2298/TAM1404247.
  23. Kumar, R. (2018), "Propagation of Stoneley waves at the boundary surface of thermoelastic diffusion solid and microstretch thermoelastic diffusion solid", Mater. Phys. Mech., 35, 87-100. https://doi.org/10.18720/MPM.3512018_12.
  24. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017),. "Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media", Applications Appl. Math., 12(1), 319-336.
  25. Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III, Geomech. Eng., 19(4), 295-305. https://doi.org/10.12989/gae.2019.19.4.295.
  26. Lata, P. and Himanshi (2021), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. https://doi.org/10.12989/cme.2021.3.1.057.
  27. Mahmou, S.R. (2014), "Effect of non-homogenity, magnetic field and gravity field on Rayleigh waves in an initially stressed elastic half-space of orthotropic material subject to rotation", J. Comput. Theor. Nanosci., 11(7), 1627-1634. https://doi.org/10.1166/jctn.2014.3542.
  28. Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
  29. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two-temperatures", Abstract Appl. Anal., 1-7. https://doi.org/10.1155/2013/583464.
  30. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Advances, 5(3), https://doi.org/10.1063/1.4914912.
  31. Markov, M. (2009), "Low-frequency stoneley wave propagation at the interface of two porous half-spaces", Geophys. J. Int., 177(2), 603-608. https://doi.org/10.1111/j.1365-246X.2009.04095.x.
  32. Oldham, K.B. and Spainer, J. (1974), The fractional calculus, Academic Press. New York, London.
  33. Othman, M.I.A. and Abbas, I.A. (2014), "Effect of rotation on plane waves in generalized thermomicrostretch elastic solid: comparison of different theories using finite element method", Can. J. Phys., 92(10). https://doi.org/10.1139/cjp-2013-0482.
  34. Saeed, T., Abbas, I.A. and Marin, M. (2019), "GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.
  35. Salama, M.M., Kozae, A.M., Elsafty, M.A. and Abelaziz, S.S. (2015), "A half-space problem in the theory of fractional order thermoelasticity with diffusion", Int. J. Scientific Eng. Res., 6(1).
  36. Singh, S. and Tochhawng, L. (2019), "Stoneley and Rayleigh waves in thermoelastic materials with voids", J. Vib. Control, https://doi.org/10.1177/1077546319847850.
  37. Shahsavari, D., Karami, B. and Li, L. (2018), "A higher-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
  38. Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38 https://doi.org/10.12989/sem.2008.28.1.019.
  39. Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Analele Universitatii Ovidius Constanta-Seria Mathematica, 22(2), 151-176. https://doi.org/10.2478/auom-2014-0040.
  40. Shaw, S. and Othman, M.I.A. (2019), "Characteristics of Rayleigh wave propagation in orthotropic magneto-thermoelastic half-space: An Eigen function expansion method", Appl. Math. Model., 67(47), 605-620. https://doi.org/10.1016/j.apm.2018.11.019.
  41. Stoneley, R. (1924), "Elastic waves at the surface of separation of two solids", Proceeding of Royal Society of London, 106, 416-428.
  42. Tomar, S.K. and Singh, D. (2006), "Propagation of stoneley waves at an interface between two microstretch elastic half-spaces", J. Vib. Control, 12(9), 995-1009. https://doi.org/10.1177/1077546306068689.
  43. Tripathi, J.J., Warbhe, S., Deshmukh, K.C. and Verma, J. (2018), "Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source", Multidiscip. Model. Mater. Struct., 14(1), 2-15.
  44. Yadav, R., Kumar, K. and Deswal, S. (2015), "Two temperature thermal viscoelasticity with fractional order strain subjected to moving heat source", J. Mathematics, 1-13. https://doi.org/10.1155/2015/487513.
  45. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.295.
  46. Zakaria, M. (2014), "Effect of hall current on generalized magneto-thermoelasticity micropolar solid subjected to ramp-type heating", Int. Appl. Mech., 50(1), 92-104. https://doi.org/10.1007/s10778-014-0615-0.
  47. Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137. https://doi.org/10.1016/j.jpcs.2019.109213.
  48. Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer, K.S. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles", Entropy, 22(10), https://doi.org/10.3390/e22101070.