Acknowledgement
We, the authors, would like to acknowledge the researchers whose research findings we have referred to in this paper.
References
- Aliabdo, A.A., Elmoaty, A.E.M.A. and Auda, E.M. (2014), "Re-use of waste marble dust in the production of cement and concrete", Constr. Build. Mater., 50, 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
- Alyamac, K.E. and Ince, R. (2009), "A preliminary concrete mix design for SCC with marble powders", Constr. Build. Mater., 23, 1201-1210. https://doi.org/10.1016/j.conbuildmat.2008.08.012
- Amlashi, A.T., Alidoust, P., Ghanizadeh, A.R., Khabiri, S., Pazhouhi, M. and Monabati, M.S. (2020), "Application of computational intelligence and statistical approaches for auto-estimating the compressive strength of plastic concrete", Eur. J. Environ. Civil Eng. https://doi.org/10.1080/19648189.2020.1803144
- Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Computat. Des., Int. J., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289
- Chavhan, P.J. and Bhole, S.D. (2014), "To study the behaviour of marble powder as supplementry cementitious material in concrete", Int. J. Eng. Res. Applicat., 4(4), 377-381.
- Chopra, P., Sharma, R.K., Kumar, M. and Chopra, T. (2018), "Comparison of machine learning techniques for the prediction of compressive strength of concrete", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/5481705.2
- Darwin, D., Dolan, C.W. and Nilson, A.H. (2016), Design of Concrete Structures, (5th Edition), Mc-Graw-Hill Education.
- Deepa, C., Sathiyakumari, K. and Preamsudha, V. (2010), "Prediction of the compressive strength of high performance concrete mix using tree based modeling", Int. J. Comput. Applicat., 6(5), 18-24.
- Dhiman, H. and Bhardwaj, S. (2015), "Partial replacement of cement with marble dust powder", Int. J. Eng. Res Applicat., 5(8), 106-114.
- Ergun, A. (2011), "Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete", Constr. Build. Mater., 25(2), 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002
- Ghazanfari, N., Gholami, S., Emad, A. and Shekarchi, M. (2017), "Evaluation of GMDH and MLP networks for prediction of compressive strength and workability of concrete", Bulletin de la Societe Royale des Sciences de Liege, 86, 855-868. https://doi.org/10.25518/0037-9565.7032
- Hassan, A.A., Mawat, M.J. and Dawood, A.S. (2019), "Prediction of compressive strength of concrete containing pozzolanic materials by applying neural networks", Int. J. Civil Eng. Technol., 10(2), 526-537.
- Khater, H.M., El Nagar, A.M., Ezzat, M. and Lottfy, M. (2020), "Fabrication of sustainable geo-polymer mortar incorporating granite waste", Compos. Mater. Eng., Int. J., 2(1), 1-12. https://doi.org/10.12989/cme.2020.2.1.001
- Kelestemur, O., Arici, E., Yildiz, S. and Gokcer, B. (2014), "Performance evaluation of cement mortars containing marble dust and glass fiber exposed to high temperature by using taguchi method", Constr. Build. Mater., 60, 17-24. https://doi.org/10.1016/j.conbuildmat.2014.02.061
- Madandoust, R., Bungey, J.H. and Ghavidel, R. (2012), "Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models", Computat. Mater. Sci., 51, 261-271. https://doi.org/10.1016/j.commatsci.2011.07.053
- Mukherjee, A. and Biswas, S.N. (1997), "Artificial neural networks in prediction of mechanical behavior of concrete at high temperature", Nuclear Eng. Des., 178, 1-11. https://doi.org/10.1016/s0029-5493(97)00152-0
- Quinlan, J.R. (1992), "Learning with continuous classes", Proceedings AI'92, (Adams and Sterling, Eds.), Singapore, pp. 343-348.
- Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., Int. J., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041
- Sakalkalel, A.D., Dhawale, G.D. and Kedar, R.S. (2014), "Experimental study on use of waste marble dust in concrete", J. Eng. Res. Applicat., 4(10), 44-50.
- Sharma, N., Thakur, M.S., Goel, P.L. and Sihag, P. (2020), "A review: Sustainable compressive strength properties of concrete mix with replacement by marble powder", J. Achiev. Mater. Manuf. Eng., 98(1), 11-23. https://doi.org/10.5604/01.3001.0014.0813
- Singh, G. and Madan, S.K. (2017), "Review on the feasibility of Marble Dust as Replacement of Cement in Concrete", Int. J. Current Eng. Technol., 7(6), 2119-2123.
- Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24, 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037
- Soliman, N. (2013), "Effect of using marble powder in concrete mixes on the behavior and strength", Int. J. Current Eng. Technol., 3(5), 1863-1870.
- Sounthararajan, V.M. and Sivakumar, A. (2013), "Effect of the lime content in marble powder for producing high strength concrete", ARPN J. Eng. Appl. Sci., 8(4), 260-264.
- Talah, A., Kharchi, F. and Chaid, R. (2015), "Influence of marble powder on high performance concrete behavior", Procedia Eng., 114, 685-690. https://doi.org/10.1016/j.proeng.2015.08.010
- Thakur, M.S., Pandhiani, S.M., Kashyap, V., Upadhya, A. and Sihag, P. (2021), "Predicting bond strength of FRP bars in concrete using soft computing techniques", Arab. J. Sci. Eng., 46, 4951-4969. https://doi.org/10.1007/s13369-020-05314-8
- Topcu, I.B, Bilir, T. and Uygunoglu, T. (2009), "Effect of waste marble dust content as filler on properties of self-compacting concrete", Constr. Build. Mater. J., 23, 1947-1953. https://doi.org/10.1016/j.conbuildmat.2008.09.007
- Upadhya, A., Thakur, M.S., Sharma, N. and Sihag, P. (2021), "Assessment of Soft Computing-Based Techniques for the Prediction of Marshall Stability of Asphalt Concrete Reinforced with Glass Fiber", Int. J. Pave. Res. Technol. https://doi.org/10.1007/s42947-021-00094-2
- Uygunotlu, T., Topcu, I.B. and Celik, A.G. (2014), "Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability", J. Cleaner Product., 84(1), 691-700. https://doi.org/10.1016/j.jclepro.2014.06.019
- Vaidevi, C. (2013), "Study on marble dust as partial replacement of cement in concrete", Indian J. Eng., 4(7), 14-16.
- Zhang, S., Cao, K., Wang, C., Wang, X., Wang, J. and Sun, B. (2020), "Effect of silica fume and waste marble powder on the mechanical and durability properties of cellular concrete", Constr. Build. Mater., 241. https://doi.org/10.1016/j.conbuildmat.2019.117980
- Zongjin, L. (2011), Advanced Concrete Technology, John Wiley and Sons.