DOI QR코드

DOI QR Code

Effect of rotation and inclined load in a nonlocal magneto-thermoelastic solid with two temperature

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University Patiala) ;
  • Singh, Sukhveer (Punjabi University APS Neighbourhood Campus)
  • Received : 2021.04.02
  • Accepted : 2021.10.17
  • Published : 2022.03.25

Abstract

This work deals with the two-dimensional deformation in a homogeneous isotropic nonlocal magneto-thermoelastic solid with two temperatures under the effects of inclined load at different inclinations. The mathematical model has been formulated by subjecting the bounding surface to a concentrated load. The Laplace and Fourier transform techniques have been used for obtaining the solution to the problem in transformed domain. The expressions for nonlocal thermal stresses, displacements and temperature are obtained in the physical domain using a numerical inversion technique. The effects of nonlocal parameter, rotation and inclined load in the physical domain are depicted and illustrated graphically. The results obtained in this paper can be useful for the people who are working in the field of nonlocal thermoelasticity, nonlocal material science, physicists and new material designers. It is found that there is a significant difference due to presence and absence of nonlocal parameter.

Keywords

References

  1. Abouelregal, A.E. (2019), "Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen's nonlocal model", J. Computat. Appl. Mech., 50(1), 118-126. https:/doi.org/10.22059/jcamech. 2019.275893.360
  2. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, Int. J., 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489
  3. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory," Steel Compos. Struct., Int. J., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369
  4. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133
  5. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
  6. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., Int. J., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719
  7. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", J. Appl. Mathe. Phys. (ZAMP), 19, 614-627. https://doi.org/10.1007/BF01594969
  8. Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publisher Corporation, New Delhi, India.
  9. Ebrahimi, F. and Shafiei, N. (2016), "Application of eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  10. Edelen, D.G.B. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Rational Mech. Anal., 43, 24-35. https://doi.org/10.1007/BF00251543
  11. Edelen, D.G.B., Green, A.E. and Laws, N. (1971), "Nonlocal continuum mechanics", Arch. Rational Mech. Anal., 43, 36-44. https://doi.org/10.1007/BF00251544
  12. Eringen, A.C. (2002), Nonlocal Continum Field Theories, Springer, New York, USA.
  13. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  14. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., Int. J., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533
  15. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of laplace transform", J. Computat. Appl. Mathe., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  16. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
  17. Jahangir, A., Tanvir, F. and Zenkour, A. (2020), "Reflection of photothermoelastic waves in a semiconductor material with different relaxations", Indian J. Phys., 95(1), 51-59. https://doi.org/10.1007/s12648-020-01690-x
  18. Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transf. Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018028397
  19. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in the transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Mathe. Modell., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
  20. Kumar, R., Sharma, N. and Lata, P. (2017), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp-type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769
  21. Lata, P and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., Int. J., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123
  22. Lata, P. and Singh, S. (2020a), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., Int. J., 22(2), 109-117. https://doi.org/10.12989/gae.2020.22.2.109
  23. Lata, P. and Singh, S. (2020b), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., Int. J., 74(3), 341-350. https://doi.org/10.12989/sem.2020.74.3.341
  24. Lata, P. and Singh, S. (2020c), "Thermomechanical interactions in a nonlocal thermoelastic model with two temperature and memory dependent derivatives", Coupl. Syst. Mech., Int. J., 9(5), 397-410. https://doi.org/10.12989/csm.2020.9.5.397
  25. Lata, P. and Singh, S. (2020d), "Effects of nonlocality and two temperature in a nonlocal thermoelastic solid due to ramp type heat source", Arab J. Basic Appl. Sci., 27(1), 358-364. https://doi.org/10.1080/25765299.2020.1825157
  26. Lata, P. and Singh, S. (2020e), "Plane wave propagation in a nonlocal magneto-thermoelastic solid with two temperature and Hall current", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2020.1838667
  27. Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
  28. Marin, M. (1997), "An uniqueness result for body with voids in linear thermoelasticity", Rendiconti di Matematica, Roma, 17(7), 103-113.
  29. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", Aip Advances, 5(3), 037113. https://doi.org/10.1063/1.4914912
  30. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293
  31. Mondal, S. (2020), "Memory response in a magneto-thermoelastic rod with moving heat source based on Eringen's nonlocal theory under dual-phase lag heat conduction", Int. J. Computat. Methods, 17(9), 1950072. https://doi.org/10.1142/S0219876219500725
  32. Othman, M.I.A. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33, 913-923. https://doi.org/10.1007/s10765-012-1202-4
  33. Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2015), "The effect of rotation on plane waves in generalized thermo-microstretch elastic solid for a mode-I crack under green naghdi theory", J. Computat. Theor. Nanosci. ,12(11), 4987-4997. https://doi.org/10.1166/jctn.2015.4022
  34. Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, UK.
  35. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., Int. J., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695
  36. Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 1-24. https://doi.org/10.3390/sym12030488
  37. Sharma, N., Kumar, R. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipiation with combined effects of rotation, vacuum and two temperatures", Appl. Mathe. Modell., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
  38. Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out of plane defects on the postbuckling behaviour of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., Int. J., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517
  39. Youssef, H.M. (2005), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Mathe., 71, 383-390. https://doi.org/10.1093/imamat/hxh101
  40. Youssef, H.M. and Al-Lehaibi, E.A. (2007), "State space approach of two-temperature generalized thermoelasticity of one-dimensional problem", Int. J. Solids Struct., 44, 1550-1562. https://doi.org/10.1016/j.ijsolstr.2006.06.035
  41. Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213