참고문헌
- Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., Int. J., 2(2), 125-140. http://doi.org/10.12989/cme.2020.2.2.125
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., Int. J., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
- Ahmed, R.A., Moustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020a), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., Int. J., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413
- Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020b), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., Int. J., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., Int. J., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147
- Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Computat. Des., Int. J., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177
- Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., Int. J., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615
- Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells", Adv. Nano Res., Int. J., 9(1), 33-45. https://doi.org/10.12989/anr.2020.9.1.033
- Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005
- Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput. https://doi.org/10.1007/s00366-020-01080-1
- Attia, M.A., Shanab, R.A., Mohamed, S.A. and Mohamed, N.A. (2019), "Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory", Int. J. Struct. Stabil. Dyn., 19(11), 1950127. https://doi.org/10.1142/s021945541950127x
- Bahaadini, R., Hosseini, M. and Amiri, M. (2020), "Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field", Eng. Comput., 37(4), 2877-2889. https://doi.org/10.1007/s00366-020-00980-6
- Bao, W.X., Zhu, C.C. and Cui, W.Z. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B: Condensed Matter, 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005
- Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Braz. Soc. Mech. Sci. Eng., 42, 33. https://doi.org/10.1007/s40430-019-2118-8
- Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001
- Benferhat, R., Daouadji, T.H. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. https://doi.org/10.12989/amr.2020.9.4.265
- Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041
- Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
- Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., Int. J., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021
- Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019b), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., Int. J., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269
- Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/jnanor.62.108
- Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated nonrectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotubereinforced composite microbeams", Mathe. Methods Appl. Sci. https://doi.org/10.1002/mma.7069
- Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384(6605), 147-150. https://doi.org/10.1038/384147a0
- Dehghan, M., Ebrahimi, F. and Vinyas, M. (2019), "Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes", Eng. Comput., 36, 1687-1703. https://doi.org/10.1007/s00366-019-00790-5
- Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., Int. J., 34(5), 657-670. https://doi.org/10.12989/SCS.2020.34.5.657
- Dharap, P., Li, Z., Nagarajaiah, S. and Barrera, E.V. (2004), "Nanotube film based on single-wall carbon nanotubes for strain sensing", Nanotechnology, 15(3), 379-382. https://doi.org/10.1088/0957-4484/15/3/026
- Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, USA.
- Dresselhaus, M.S., Lin, Y.M., Rabin, O., Jorio, A., Souza Filho, A.G., Pimenta, M.A., Saito, R., Samsonidze, G. and Dresselhaus, G. (2003), "Nanowires and nanotubes", Mater. Sci. Eng.: C, 23(1-2), 129-140. https://doi.org/10.1016/s0928-4931(02)00240-0
- Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518
- Ebrahimi, F. and Barati, M.R. (2019), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran J. Sci. Technol. Trans. Mech. Eng., 43, 205-220. https://doi.org/10.1007/s40997-017-0131-z
- Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Computat. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136
- Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/jnanor.57.136
- Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E. and Abdraboh, A.M. (2019b), "Modal participation of fixed-fixed single-walled carbon nanotube with vacancies", Int. J. Adv. Struct. Eng., 11(2), 151-163. https://doi.org/10.1007/s40091-019-0222-8
- Eltaher, M.A., Almalki, T.A., Almitani, K. and Ahmed, K.I. (2019c), "Participation Factor and Vibration of Carbon Nanotube with Vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/jnanor.57.158
- Eltaher, M.A., Omar, F.-A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., Int. J., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019a), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupl. Syst. Mech., Int. J., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019b), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., Int. J., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283
- Frankland, S. (2003), "The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/s0266-3538(03)00059-9
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037
- Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., Int. J., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293
- Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., Int. J., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063
- Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., Int. J., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., Int. J., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075
- Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
- Hashim, H.A. and Sadiq, I.A. (2021), "A five-variable refined plate theory for thermal buckling analysis of composite plates", Compos. Mater. Eng., Int. J., 3(2), 135-155. https://doi.org/10.12989/cme.2021.3.2.135
- Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic Properties of C and BxCyNz Composite Nanotubes", Phys. Rev. Lett., 80, 4502. https://doi.org/10.1103/PhysRevLett.80.4502
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013
- Jiang, H., Liu, B., Huang, Y. and Hwang, K.C. (2004), "Thermal expansion of single wall carbon nanotubes", J. Eng. Mater. Technol., 126(3), 265. https://doi.org/10.1115/1.1752925
- Kachapi, S.H.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano Res., Int. J., 9(4), 277-294. https://doi.org/10.12989/anr.2020.9.4.277
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
- Karami, B. and Janghorban, M. (2019b), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Wall. Struct., 143, 106227. https://doi.org/10.1016/j.tws.2019.106227
- Karami, B. and Janghorban, M. (2019a), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002
- Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018a), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
- Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018b), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(1), 287-301. https://doi.org/10.1177/0954406218756451
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2021), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., Int. J., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349
- Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, Int. J., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031
- Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B, 58(20), 14013-14019. https://doi.org/10.1103/physrevb.58.14013
- Mahesh, V. and Harursampath, D. (2020), "Nonlinear vibration of functionally graded magneto-electroelastic higher order plates reinforced by CNTs using FEM", Eng. Comput. https://doi.org/10.1007/s00366-020-01098-5
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020a), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., Int. J., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149
- Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., Int. J., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2
- Mohammadimehr, M., Firouzeh, S., Pahlavanzadeh, M., Heidari, Y. and Irani-Rahaghi, M. (2020), "Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT", Comput. Concrete, Int. J., 26(1), 75-94. https://doi.org/10.12989/cac.2020.26.1.075
- Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., Int. J., 3(1), 1-23. https://doi.org/10.12989/cme.2021.3.1.001
- Robertson, J. (2004), "Realistic applications of CNTs", Materials Today, 7(10), 46-52. https://doi.org/10.1016/s1369-7021(04)00448-1
- Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput. https://doi.org/10.1007/s00366-020-01052-5
- Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., Int. J., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329
- Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A: Mater. Sci. Process., 69(3), 255-260. https://doi.org/10.1007/s003390050999
- Sedighi, H.M. and Yaghootian, A. (2016), "Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity", J. Appl. Mech. Tech. Phys., 57(1), 90-100. https://doi.org/10.1134/s0021894416010107
- Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/jnanor.61.97
- Shariati, A., Barati, M. R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., Int. J., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265
- She, G.-L., Liu, H.-B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., Int. J., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179
- Tadmor, E.B., Smith, G.S., Bernstein, N. and Kaxiras, E. (1999), "Mixed finite element and atomistic formulation for complex crystals", Phys. Rev. B, 59(1), 235-245. https://doi.org/10.1103/physrevb.59.235
- Tahouneh, V., Naei, M.H. and Mashhadi, M.M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., Int. J., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261
- Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., Int. J., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
- Tersoff, J. and Ruoff, R.S. (1994), "Structural properties of a carbon-nanotube crystal", Phys. Rev. Lett., 73(5), 676-679. https://doi.org/10.1103/physrevlett.73.676
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput. https://doi.org/10.1007/s00366-020-01154-0
- Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., Int. J., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069
- Timoshenko, S.P. (1921), "LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(245), 744-746. https://doi.org/10.1080/14786442108636264
- Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L. and Wu, S.-Y. (2000), "Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation", Nature, 405(6788), 769-772. https://doi.org/10.1038/35015519
- Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.
- Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
- Wilder, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E. and Dekker, C. (1998), "Electronic structure of atomically resolved carbon nanotubes", Nature, 391(6662), 59-62. https://doi.org/10.1038/34139
- Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous-cellular core reinforced with graphene nanoplatelets", Compos. Struct., 252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700
- Yao, X. and Han, Q. (2006), "Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change", J. Eng. Mater. Technol., 128(3), 419. https://doi.org/10.1115/1.2203102
- Ye, L.H., Liu, B.G. and Wang, D.S. (2001), "Ab initio molecular dynamics study on small carbon nanotubes", Chinese Phys. Lett., 18(11), 1496-1499. https://doi.org/10.1088/0256-307x/18/11/323
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2004), "Timoshenko-beam effects on transverse wave propagation in carbon nanotubes", Compos. Part B: Eng., 35(2), 87-93. https://doi.org/10.1016/j.compositesb.2003.09.002
- Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., Int. J., 37(5), 551-569. https://doi.org/10.12989/scs.2020.37.5.551
- Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., Int. J., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177