Acknowledgement
The authors would like to thank the organizations of the International Project Competition for SHM (IPC-SHM 2020) ANCRiSST, Harbin Institute of Technology (China), and University of Illinois at Urbana-Champaign (USA) for their generosity of providing the invaluable data. The authors also would like to thank the chairs of IPC-SHM 2020 Prof. Hui Li, and Prof. Billie F. Spencer Jr. for their leadership on the competition.
References
- Abdellatif, M., Peel, H., Cohn, A.G. and Fuentes, R. (2020), "Combining block-based and pixel-based approaches to improve crack detection and localization", Automat. Constr., 122, 103492. https://doi.org/10.1016/j.autcon.2020.103492
- Albrecht, P. and Wright, W. (2000), "Fatigue and fracture of steel bridges", Eur. Struct. Integr. Soc., 26, 211-234. https://doi.org/10.1016/S1566-1369(00)80051-5
- Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017), "Segnet: a deep convolutional encoder-decoder architecture for image segmentation", IEEE Transact. Pattern Anal. Mach. Intell., 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Breheret, A. (2017), "Pixel Annotation Tool", Retrieved from: https://github.com/abreheret/PixelAnnotationTool
- Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017), "Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs", IEEE Transact. Pattern Anal. Mach. Intell., 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision, Munich, Germany, September.
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009), "Imagenet: a large-scale hierarchical image database", IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, June.
- Dung, C.V. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Philos. Transact. Royal Soc. A: Mathe. Phys. Eng. Sci., 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928
- Feng, D. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection-A review", Eng. Struct., 156, 105-117. https://doi.org/10.1016/j.engstruct.2017.11.018
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NA, USA, June.
- He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017), "Mask rcnn", Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, October.
- Hsu, S.-H., Chang, T.-W. and Chang, C.-M. (2020), "Concrete Surface Crack Segmentation Based on Deep Learning", In: European Workshop on Structural Health Monitoring (Lecture Notes in Civil Engineering), Vol. 128, pp. 24-34. https://doi.org/10.1007/978-3-030-64908-1_3
- Jegou, S., Drozdzal, M., Vazquez, D., Romero, A. and Bengio, Y. (2017), "The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, July.
- Kalfarisi, R., Wu, Z.Y. and Soh, K. (2020), "Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization", J. Comput. Civil Eng., 34(3), 04020010. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000890
- Kiefer, J. and Wolfowitz, J. (1952), "Stochastic estimation of the maximum of a regression function", Math. Statist., 23(3), 462-466. https://doi.org/10.1214/aoms/1177729392
- Kirk, D. (2007), "NVIDIA CUDA software and GPU parallel computing architecture", Proceedings of the 6th International Symposium on Memory Management, New York, NY, USA, October.
- Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P. and Zitnick, C.L. (2014), "Microsoft coco: common objects in context", Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, September.
- Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2017), "Feature pyramid networks for object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July.
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June.
- Meng, Z., Fan, X., Chen, X., Chen, M. and Tong, Y. (2017), "Detecting small signs from large images", IEEE International Conference on Information Reuse and Integration, San Diego, CA, USA, August.
- Mohan, A. and Poobal, S. (2018), "Crack detection using image processing: a critical review and analysis", Alexandria Eng. J., 57(2), 787-798. https://doi.org/10.1016/j.aej.2017.01.020
- Ozge Unel, F., Ozkalayci, B.O. and Cigla, C. (2019), "The power of tiling for small object detection", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, June.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A. (2019), "PyTorch: an imperative style, high-performance deep learning library", Adv. Neural Inform. Process. Syst., 32, 8024-8035.
- Redmon, J. and Farhadi, A. (2018), "Yolov3: an incremental improvement", arXiv preprint, arXiv: 1804.02767.
- Ren, S., He, K., Girshick, R. and Sun, J. (2015), "Faster r-cnn: towards real-time object detection with region proposal networks", IEEE Transact. Pattern Anal. Mach. Intell., 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Song, G., Wang, C. and Wang, B. (2017), "Structural health monitoring (SHM) of civil structures", Appl. Sci., 7(8), 789. https://doi.org/10.3390/app7080789
- Song, Q., Wu, Y., Xin, X., Yang, L., Yang, M., Chen, H., Liu, C., Hu, M., Chai, X. and Li, J. (2019), "Real-time tunnel crack analysis system via deep learning", IEEE Access, 7, 64186-64197. https://doi.org/10.1109/ACCESS.2019.2916330
- Wada, K. (2016), "labelme: Image Polygonal Annotation with Python", Retrieved from: https://github.com/wkentaro/labelme
- Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y. and Girshick, R. (2019), "Detectron2", Retrieved from: https://github.com/facebookresearch/detectron2
- Zhou, C. (2020), "Yolact++ better real-time instance segmentation", Ph.D. Dissertation; University of California, Davis, CA, USA.