과제정보
The authors acknowledge the financial support from National Natural Science Foundation of China (Grant No. 52025083). The authors would like to thank the organizations of the International Project Competition for SHM (IPC-SHM 2020) ANCRiSST, Harbin Institute of Technology (China), and University of Illinois at Urbana-Champaign (USA) for their generously providing the invaluable data from actual structures. The authors also would like to thank the chairs of IPC-SHM 2020 Prof. Hui Li, and Prof. Billie F. Spencer Jr for their leadership on the competition.
참고문헌
- Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black-box images", Comput.-Aided Civil Infrastr. Eng., 34(8), 713-727. https://doi.org/10.1111/mice.12440
- Bao, Y. and Li, H. (2021), "Machine learning paradigm for structural health monitoring", Struct. Health Monitor., 20(4), 1353-1372. https://doi.org/10.1177/1475921720972416
- Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A summary and benchmark problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Canny, J. (1986), "A computational approach to edge detection", IEEE Transact. Pattern Anal. Mach. Intell., (6), 679-698.
- Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types", Comput.-Aided Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Chen, F.-C. and Jahanshahi, M.R. (2017), "NB-CNN: Deep learning-based crack detection using convolutional neural network and Naive Bayes data fusion", IEEE Transact. Indust. Electro., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844
- de Freitas, S.T., Kolstein, H. and Bijlaard, F. (2012), "Parametric study on the interface layer of renovation solutions for orthotropic steel bridge decks", Comput.-Aided Civil Infrastr. Eng., 27(2), 143-153. https://doi.org/10.1111/j.1467-8667.2010.00693.x
- Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L. (2009), "Imagenet: A large-scale hierarchical image database", Proceedings of the IEEE conference on computer vision and pattern recognition, Miami Beach, FL, USA, June.
- Dung, C.V. and Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, June.
- Han, Q., Xu, J., Carpinteri, A. and Lacidogna, G. (2015), "Localization of acoustic emission sources in structural health monitoring of masonry bridge", Struct. Control Health Monitor., 22(2), 314-329. https://doi.org/10.1002/stc.1675
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, VA, USA, June.
- Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E. and Saltz, J.H. (2016), "Patch-based con- volutional neural network for whole slide tissue image classification", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, VA, USA, June.
- Hu, J., Shen, L. and Sun, G. (2018), "Squeeze-and-excitation networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, June.
- Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017), "Densely connected convolutional networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July.
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, May.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017), "ImageNet classification with deep convolutional neural networks", Commun. ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
- Li, S., Zhao, X. and Zhou, G. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 34(7), 616-634. https://doi.org/10.1111/mice.12433
- Lim, R.S., La, H.M. and Sheng, W. (2014), "A robotic crack inspection and mapping system for bridge deck maintenance", IEEE Transact. Automat. Sci. Eng., 11(2), 367-378. https://doi.org/10.1109/TASE.2013.2294687
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmen- tation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June.
- Mutlib, N.K., Baharom, S.B., El-Shafie, A. and Nuawi, M.Z. (2016), "Ultrasonic health monitoring in structural engineering: buildings and bridges", Struct. Control Health Monitor., 23(3), 409-422. https://doi.org/10.1002/stc.1800
- Oh, J.-K., Jang, G., Oh, S., Lee, J.H., Yi, B.-J., Moon, Y.S., Lee, J.S. and Choi, Y. (2009). "Bridge inspection robot system with machine vision", Automat. Constr., 18(7), 929-941. https://doi.org/10.1016/j.autcon.2009.04.003
- Ong, E.P., Lee, J.A., Cheng, J., Xu, G., Lee, B.H., Laude, A., Teoh, S., Lim T.H., Wong D.W.K. and Liu, J. (2015), "A robust outlier elimination approach for multimodal retina image registration", Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, October.
- Pan, Y., Zhang, G. and Zhang, L. (2020). "A spatial-channel hierarchical deep learning network for pixel-level automated crack detection", Automat. Constr., 119, 103357. https://doi.org/10.1016/j.autcon.2020.103357
- Qiao, W., Liu, Q., Wu, X., Ma, B. and Li, G. (2021), "Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module", Sensors, 21(9), 2902. https://doi.org/10.3390/s21092902
- Ren, S., He, K., Girshick, R. and Sun, J. (2016), "Faster R-CNN: Towards real-time object detection with region proposal networks", arXiv:1506.01497 [cs]. http://arxiv.org/abs/1506.01497
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of International Conference on Medical Image Computing and Computer- Assisted Intervention, Munich, Germany, October.
- Saouma, V.E., Barton, C.C. and Gamaleldin, N.A. (1990), "Fractal characterization of fracture surfaces in concrete", Eng. Fract. Mech., 35(1-3), 47-53. https://doi.org/10.1016/0013-7944(90)90182-G
- Sofia, T.D.F., Henk, K. and Frans, B. (2012), "Parametric study on the interface layer of renovation solutions for orthotropic steel bridge decks", Comput.-Aided Civil Infrastr. Eng., 27(2), 143-153. https://doi.org/10.1111/j.1467-8667.2010.00693.x
- Song, W., Jia, G., Jia, D. and Zhu, H. (2019), "Automatic Pavement Crack Detection and Classification Using Multiscale Feature Attention Network", IEEE Access, 7, 171001-171012. https://doi.org/10.1109/ACCESS.2019.2956191
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Eng., 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sun, B.-C. and Qiu, Y. (2007). "Automatic identification of pavement cracks using mathematic morphology", Proceedings of International Conference on Transportation Engineering 2007, pp. 1783-1788.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I. (2017), "Attention is all you need", arXiv preprint arXiv:1706.03762.
- Wan, H., Gao, L., Su, M., Sun, Q. and Huang, L. (2021), "Attention-Based Convolutional Neural Network for Pavement Crack Detection", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2021/5520515
- Woo, S., Park, J., Lee, J.Y. and Kweon, I.S. (2018), "Cbam: Convolutional block attention module", Proceedings of the European Conference on Computer Vision, Munich, Germany, September.
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2019), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images", Struct. Health Monitor., 18(3), 653-674. https://doi.org/10.1177/1475921718764873
- Yang, Y. and Nagarajaiah, S. (2014), "Blind identification of damage in time-varying systems using independent component analysis with wavelet transform", Mech. Syst. Signal Process., 47(1-2), 3-20. https://doi.org/10.1016/j.ymssp.2012.08.029
- Yang, Y. and Nagarajaiah, S. (2016), "Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure", Mech. Syst. Signal Process., 74, 165-182. https://doi.org/10.1016/j.ymssp.2015.11.009
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Ye, X.-W., Jin, T. and Chen, P.-Y. (2019), "Structural crack detection using deep learning-based fully convolutional networks", Adv. Struct. Eng., 22(16), 3412-3419. https://doi.org/10.1177/1369433219836292
- Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Tao, S., Chen, C., Li, J.Q. and Li, B. (2018), "Deep learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet", J. Comput. Civil Eng., 32(5), 04018041. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775