과제정보
The authors would like to thank the organization of the IPC-SHM 2020: Harbin Institute of Technology, University of Illinois at Urbana-Champaign and ANCRiSST for providing the valuable data used in this study.
참고문헌
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Comput. Civil Eng., 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017), "Segnet: A deep convolutional encoder-decoder architecture for image segmentation", IEEE Transact. Pattern Anal. Mach. Intell., 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black-box images", Comput.-Aided Civil Infrastr. Eng., 34(8), 713-727. https://doi.org/10.1111/mice.12440
- Bao, Y. and Li, H. (2021), "Machine learning paradigm for structural health monitoring", Struct. Health Monitor., 20(4), 1353-1372. https://doi.org/10.1177/1475921720972416
- Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer Jr, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A summary and benchmark problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Beckman, G.H., Polyzois, D. and Cha, Y.J. (2019), "Deep learning-based automatic volumetric damage quantification using depth camera", Automat. Constr., 99, 114-124. https://doi.org/10.1016/j.autcon.2018.12.006
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Chen, F.C. and Jahanshahi, M.R. (2017), "NB-CNN: Deep learning-based crack detection using convolutional neural network and Naive Bayes data fusion", IEEE Transact. Indust. Electron., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844
- Chen, F.C. and Jahanshahi, M.R. (2019), "NB-FCN: Real-time accurate crack detection in inspection videos using deep fully convolutional network and parametric data fusion", IEEE Transact. Instrument. Measur., 69(8), 5325-5334. https://doi.org/10.1109/TIM.2019.2959292
- Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017a), "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs", IEEE Transact. Pattern Anal. Mach. Intell., 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Chen, L.C., Papandreou, G., Schroff, F. and Adam, H. (2017b), "Rethinking atrous convolution for semantic image segmentation", arXiv. https://arxiv.org/abs/1706.05587
- Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September, pp. 801-818.
- Cheng, H.D., Chen, J.R., Glazier, C. and Hu, Y.G. (1999), "Novel approach to pavement cracking detection based on fuzzy set theory", J. Comput. Civil Eng., 13(4), 270-280. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:4(270)
- Cheng, H.D., Shi, X.J. and Glazier, C. (2003), "Real-time image thresholding based on sample space reduction and interpolation approach", J. Comput. Civil Eng., 17(4), 264-272. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(264)
- Choi, W. and Cha, Y.J. (2019), "SDDNet: Real-time crack segmentation", IEEE Transact. Industr. Electron., 67(9), 8016-8025. https://doi.org/10.1109/TIE.2019.2945265
- Ciregan, D., Meier, U. and Schmidhuber, J. (2012), "Multi-column deep neural networks for image classification", IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, USA, June, pp. 3642-3649.
- Deng, J., Lu, Y. and Lee, V.C.S. (2020), "Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network", Comput.-Aided Civil Infrastr. Eng., 35(4), 373-388. https://doi.org/10.1111/mice.12497
- Ding, L., Zhang, J. and Bruzzone, L. (2020), "Semantic segmentation of large-size VHR remote sensing images using a two-stage multiscale training architecture", IEEE Transact. Geosci. Remote Sensing, 58(8), 5367-5376. https://doi.org/10.1109/TGRS.2020.2964675
- Dumoulin, V. and Visin, F. (2016), "A guide to convolution arithmetic for deep learning", arXiv preprint. https://arxiv.org/abs/1603.07285
- Dung, C.V. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Fujita, Y. and Hamamoto, Y. (2011), "A robust automatic crack detection method from noisy concrete surfaces", Mach. Vis. Applicat., 22(2), 245-254. https://doi.org/10.1007/s00138-009-0244-5
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification", Proceedings of the IEEE International Conference on Computer Vision, Boston, MA, USA, June, pp. 1026-1034.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NA, USA, June, pp. 770-778.
- Ioffe, S. and Szegedy, C. (2015), "Batch normalization: Accelerating deep network training by reducing internal covariate shift", Proceedings of International Conference on Machine Learning, Lille, France, June, pp. 448-456.
- Jahanshahi, M.R., Kelly, J.S., Masri, S.F. and Sukhatme, G.S. (2009), "A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures", Struct. Infrastr. Eng., 5(6), 455-486. https://doi.org/10.1080/15732470801945930
- Jahanshahi, M.R., Masri, S.F., Padgett, C.W. and Sukhatme, G.S. (2013), "An innovative methodology for detection and quantification of cracks through incorporation of depth perception", Mach. Vis. Applicat., 24(2), 227-241. https://doi.org/10.1007/s00138-011-0394-0
- Ji, A., Xue, X., Wang, Y., Luo, X. and Xue, W. (2020), "An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement", Automat. Constr., 114, 103176. https://doi.org/10.1016/j.autcon.2020.103176
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint. https://arxiv.org/abs/1412.6980
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Lee, B.J., Shin, D.H., Seo, J.W., Jung, J.D. and Lee, J.Y. (2011), "Intelligent bridge inspection using remote controlled robot and image processing technique", International Symposium on Automation and Robotics in Construction, Seoul, Korea, June.
- Li, X., Chen, S., Hu, X. and Yang, J. (2019), "Understanding the disharmony between dropout and batch normalization by variance shift", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, June, pp. 2682-2690.
- Lim, R.S., La, H.M. and Sheng, W. (2014), "A robotic crack inspection and mapping system for bridge deck maintenance", IEEE Transact. Automat. Sci. Eng., 11(2), 367-378. https://doi.org/10.1109/TASE.2013.2294687
- Lin, M., Chen, Q. and Yan, S. (2013), "Network in network", arXiv preprint. https://arxiv.org/abs/1312.4400
- Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, October, pp. 2980-2988.
- Liu, Y., Ren, Q., Geng, J., Ding, M. and Li, J. (2018), "Efficient patch-wise semantic segmentation for large-scale remote sensing images", Sensors, 18(10), 3232. https://doi.org/10.3390/s18103232
- Liu, Y., Yao, J., Lu, X., Xie, R. and Li, L. (2019a), "DeepCrack: A deep hierarchical feature learning architecture for crack segmentation", Neurocomputing, 338, 139-153. https://doi.org/10.1016/j.neucom.2019.01.036
- Liu, Z., Cao, Y., Wang, Y. and Wang, W. (2019b), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automat. Constr., 104, 129-139. https://doi.org/10.1016/j.autcon.2019.04.005
- Liu, J., Yang, X., Lau, S., Wang, X., Luo, S., Lee, V.C.S. and Ding, L. (2020), "Automated pavement crack detection and segmentation based on two-step convolutional neural network", Comput.-Aided Civil Infrastr. Eng., 35(11), 1291-1305. https://doi.org/10.1111/mice.12622
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, June, pp. 3431-3440.
- Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. (2018), "Road damage detection and classification using deep neural networks with smartphone images", Comput.-Aided Civil Infrastr. Eng., 33(12), 1127-1141. https://doi.org/10.1111/mice.12387
- Nair, V. and Hinton, G.E. (2010), "Rectified linear units improve restricted boltzmann machines", Proceedings of International Conference on Machine Learning, Haifa, Israel, June.
- Oh, J.K., Jang, G., Oh, S., Lee, J.H., Yi, B.J., Moon, Y.S., Lee, J.S. and Choi, Y. (2009), "Bridge inspection robot system with machine vision", Automat. Constr., 18(7), 929-941. https://doi.org/10.1016/j.autcon.2009.04.003
- Ren, S., He, K., Girshick, R. and Sun, J. (2015), "Faster r-cnn: Towards real-time object detection with region proposal networks", Adv. Neural Inform. Process. Syst., 28, 91-99. https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", International Conference on Medical Image Computing and Computer-Assisted Intervention, October, pp. 234-241.
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Tasar, O., Tarabalka, Y. and Alliez, P. (2019), "Incremental learning for semantic segmentation of large-scale remote sensing data", IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, 12(9), 3524-3537. https://doi.org/10.1109/JSTARS.2019.2925416
- Xu, Y., Li, S., Zhang, D., Jin, Y., Zhang, F., Li, N. and Li, H. (2018), "Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images", Struct. Control Health Monitor., 25(2), e2075. https://doi.org/10.1002/stc.2075
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2019), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images", Struct. Health Monitor., 18(3), 653-674. https://doi.org/10.1177/1475921718764873
- Xue, Y. and Li, Y. (2018), "A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects", Comput.-Aided Civil Infrastr. Eng., 33(8), 638-654. https://doi.org/10.1111/mice.12367
- Yamaguchi, T. and Hashimoto, S. (2010), "Fast method for crack detection surface concrete large-size images using percolation-based image processing", Mach. Vis. Appl., 21, 797-809. https://doi.org/10.1007/s00138-009-0189-8
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Zhang, X., Rajan, D. and Story, B. (2019), "Concrete crack detection using context-aware deep semantic segmentation network", Comput.-Aided Civil Infrastr. Eng, 34(11), 951-971. https://doi.org/10.1111/mice.12477