Acknowledgement
The authors would like to express their sincere thanks to Jau Yu Chou and Vedhus Hoskere for providing comments and valuable suggestions during the course of this research. In addition, the first and third author were supported in part by the China Scholarship Council under grants No. 201908040012 and No. 201706320312, respectively.
References
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Comput. Civil Eng., 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- Adhikari, R.S., Moselhi, O. and Bagchi, A. (2014), "Image-based retrieval of concrete crack properties for bridge inspection", Automat. Constr., 39, 180-194. https://doi.org/10.1016/j.autcon.2013.06.011
- ASCE's 2021 infrastructure report card (2021), Bridges; American Society of Civil Engineers, USA. https://infrastructurereportcard.org/cat-item/bridges/
- Bao, Y.Q. and Li, H. (2020), "Machine learning paradigm for structural health monitoring", Struct. Health Monitor., 1475921720972416. https://doi.org/10.1177/1475921720972416
- Bao, Y.Q., Chen, Z.C., Wei, S.Y., Xu, Y., Tang, Z.Y. and Li, H. (2019), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y.Q., Li, J., Nagayama, T., Xu, Y., Spencer Jr., B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A summary and benchmark problem", Struct. Health Monitor., 20(4), 14759217211006485. https://doi.org/10.1177/14759217211006485
- Blender (n.d.), https://www.blender.org/
- Blender API Documentation. (n.d.), https://docs.blender.org/api/2.79/
- Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D.A., Valdes Hernandez, M., Wardlaw, J. and Rueckert, D. (2018), "Gan augmentation: Augmenting training data using generative adversarial networks", arXiv preprint arXiv:1810.10863.
- Bray, D.E. and Stanley, R.K. (1996), Nondestructive Evaluation: A Tool in Design, Manufacturing and Service, CRC Press.
- Burley, B. and Studios, W.D.A. (2012), "Physically-based shading at Disney", ACM SIGGRAPH, 2012, 1-7.
- CC0 Textures - Free Public Domain PBR Materials. https://www.sharetextures.com/
- Chen, L.C., Papandreou, G., Schroff, F. and Adam, H. (2017), "Rethinking atrous convolution for semantic image segmentation", arXiv preprint arXiv:1706.05587.
- Farrar, C.R. and Worden, K. (2012), Structural Health Monitoring: A Machine Learning Perspective, John Wiley & Sons.
- Fisher, J.W. and Yuceoglu, U. (1978), "A survey of localized cracking in steel bridges", 1978, p. 334.
- Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J. and Greenspan, H. (2018), "Synthetic data augmentation using GAN for improved liver lesion classification", Proceedings of 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, April, pp. 289-293. https://doi.org/10.1109/ISBI.2018.8363576
- Giakoumis, I., Nikolaidis, N. and Pitas, I. (2005), "Digital image processing techniques for the detection and removal of cracks in digitized paintings", IEEE Transact. Image Process., 15(1), 178-188. https://doi.org/10.1109/TIP.2005.860311
- Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial networks", arXiv preprint arXiv: 1406.2661.
- Han, Q.H., Xu, J., Carpinteri, A. and Lacidogna, G. (2015), "Localization of acoustic emission sources in structural health monitoring of masonry bridge", Struct. Control Health Monitor., 22(2), 314-329. https://doi.org/10.1002/stc.1675
- Hoskere V., Narazaki, Y., Hoang, T.A. and Spencer Jr., B.F. (2018), "Towards automated post-earthquake inspections with deep learning-based condition-aware models", arXiv:1809.09195.
- Hoskere, V., Narazaki, Y., Hoang, T.A. and Spencer Jr., B.F. (2020), "MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure", J. Civil Struct. Health Monitor., 10, 757-773. https://doi.org/10.1007/s13349-020-00409-0
- Jahanshahi, M.R., Kelly, J.S., Masri, S.F. and Sukhatme, G.S. (2009), "A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures", Struct. Infrastr. Eng., 5(6), 455-486. https://doi.org/10.1080/15732470801945930
- Jahanshahi, M.R., Chen, F.C., Joffe, C. and Masri, S.F. (2017), "Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants", Struct. Infrastr. Eng., 13(8), 1013-1026. https://doi.org/10.1080/15732479.2016.1231207
- Liu, Y.F., Cho, S., Spencer Jr., B.F. and Fan, J.S. (2016), "Concrete crack assessment using digital image processing and 3D scene reconstruction", J. Comput. Civil Eng., 30(1), 04014124. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000446
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440.
- Margineantu, D.D. (2000), "When does imbalanced data require cost-sensitive learning?", Report No. WS-00-05; AAAI Workshop.
- Mohan, A. and Poobal, S. (2018), "Crack detection using image processing: A critical review and analysis", Alexandria Eng. J., 57(2), 787-798. https://doi.org/10.1016/j.aej.2017.01.020
- Narazaki, Y., Gomez, F., Hoskere, V., Smith, M.D. and Spencer Jr., B.F. (2020a), "Efficient development of vision-based dense three-dimensional displacement measurement algorithms using physics-based graphics models", Struct. Health Monitor., 1475921720939522. https://doi.org/10.1177/1475921720939522
- Narazaki, Y., Hoskere, V., Hoang, T.A., Fujino, Y., Sakurai, A. and Spencer Jr., B.F. (2020b), "Vision-based automated bridge component recognition with high-level scene consistency", Comput.-Aided Civil Infrastr Eng., 35(5), 465-482. https://doi.org/10.1111/mice.12505
- Narazaki, Y., Hoskere, V., Yoshida, K., Spencer Jr., B.F. and Fujino, Y. (2021), "Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts", Mech. Syst. Signal Process., 160, 107850. https://doi.org/10.1016/j.ymssp.2021.107850
- Perlin, K. (1985), "An image synthesizer", ACM Siggraph Computer Graphics, 19(3), 287-296. https://doi.org/10.1145/325165.325247
- Perlin, K. (2001), "Noise hardware. In Real-Time Shading", SIGGRAPH Course Notes.
- Prasanna, P., Dana, K.J., Gucunski, N., Basily, B.B., La, H.M., Lim, R.S. and Parvardeh, H. (2014), "Automated crack detection on concrete bridges", IEEE Transact. Automat. Sci. Eng., 13(2), 591-599. https://doi.org/10.1109/TASE.2014.2354314
- Ros, G., Sellart, L., Materzynska, J., Vazquez, D. and Lopez, A.M. (2016), "The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234-3243.
- Sadler, D.J. and Ahn, C.H. (2001), "On-chip eddy current sensor for proximity sensing and crack detection", Sensors Actuators A: Phys., 91(3), 340-345. https://doi.org/10.1016/S0924-4247(01)00605-7
- Shader Editor - Blender Manual. https://docs.blender.org/manual/en/latest/editors/shader_editor.html
- Shorten, C. and Khoshgoftaar, T.M. (2019), "A survey on image data augmentation for deep learning", J. Big Data, 6(1), 1-48. https://doi.org/10.1186/s40537-019-0197-0
- Spencer Jr., B.F., Hoskere. V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Szeliski, R. (2010), Computer Vision: Algorithms and Applications, Springer Science & Business Media.
- Textures for 3D, graphic design and Photoshop! (n.d.). https://www.textures.com/
- Xu, J.L., Dong, Y.K., Zhang, Z.H., Li, S.L., He, S.Y. and Li, H. (2016), "Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors", Measure. Sci. Technol., 27(12), 124017. https://doi.org/10.1088/0957-0233/27/12/124017
- Xu, Y., Li, S.L., Zhang, D.Y., Jin, Y., Zhang, F.J., Li, N. and Li, H. (2018), "Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images", Struct. Control Health Monitor., 25(2), e2075. https://doi.org/10.1002/stc.2075
- Xu, Y., Bao, Y.Q., Chen, J.H., Zuo, W.M. and Li, H. (2019), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images", Struct. Health Monitor., 18(3), 653-674. https://doi.org/10.1177/1475921718764873
- Yeum, C.M. and Dyke, S.J. (2015), "Vision-based automated crack detection for bridge inspection", Comput.-Aided Civil Infrastr. Eng., 30(10), 759-770. https://doi.org/10.1111/mice.12141
- Zhang, A., Wang, K.C.P., Li, B.X., Yang, E.H., Dai, X.X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network", Comput.-Aided Civil Infrastr. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297