과제정보
This study was supported by Monash University for the scholarships and the high-performance computation platform. The authors appreciate the organizations of the IPC-SHM 2020 ANCRiSST, Harbin Institute of Technology (China), and University of Illinois at Urbana-Champaign (USA) for their generously providing invaluable data from actual structures. The authors also would like to thank the chairs of IPC-SHM 2020 Prof. Hui Li, and Prof. Billie F. Spencer Jr for their leadership on the competition.
참고문헌
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Comput. Civil Eng., 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- Bao, Y., Chen, Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer Jr, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A summary and benchmark problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning- based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Dung, C.V. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep learning, MIT press Cambridge.
- He, K., Zhang, X., Ren, S. and Sun, J. (2014), "Spatial pyramid pooling in deep convolutional networks for visual recognition", IEEE Transact. Pattern Anal. Mach. Intell., 37(9), 1904-1916. https://doi.org/10.1007/978-3-319-10578-9_23
- Huang, M.Q., Ninic, J. and Zhang, Q.B. (2021), "BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives", Tunnell. Undergr. Space Technol., 108, 103677. https://doi.org/10.1016/j.tust.2020.103677
- Hutchinson, T.C. and Chen, Z. (2006), "Improved image analysis for evaluating concrete damage", J. Comput. Civil Eng., 20(3), 210-216. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210)
- Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118, 103291. https://doi.org/10.1016/j.autcon.2020.103291
- Koch, C., Georgieva, K., Kasireddy, V., Akinci, B. and Fieguth, P. (2015), "A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure", Adv. Eng. Inform., 29(2), 196-210. https://doi.org/10.1016/j.aei.2015.01.008
- Lattanzi, D. and Miller, G.R. (2014), "Robust automated concrete damage detection algorithms for field applications", J. Comput. Civil Eng., 28(2), 253-262. https://doi.org/10.1061/(asce)cp.1943-5487.0000257
- Lei, B., Ren, Y., Wang, N., Huo, L. and Song, G. (2020), "Design of a new low-cost unmanned aerial vehicle and vision-based concrete crack inspection method", Struct. Health Monitor., 19(6), 1871-1883. https://doi.org/10.1177/1475921719898862
- Li, L., Wang, Q., Zhang, G., Shi, L., Dong, J. and Jia, P. (2018), "A method of detecting the cracks of concrete undergo high-temperature", Constr. Build. Mater., 162, 345-358. https://doi.org/10.1016/j.conbuildmat.2017.12.010
- Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2017), "Feature pyramid networks for object detection", Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117-2125. https://doi.org/10.1109/CVPR.2017.106
- Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2018), "Focal loss for dense object detection", Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980-2988. https://doi.org/10.1109/ICCV.2017.324
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", IEEE Transact. Pattern Anal. Mach. Intell., 39(4), 640-651. https://doi.org/10.1109/CVPR.2015.7298965
- Milletari, F., Navab, N. and Ahmadi, S.A. (2016), "Fully convolutional neural networks for volumetric medical image segmentation", Proceedings of 2016 Fourth International Conference on 3D Vision (3DV), pp. 565-571. https://doi.org/10.1109/3DV.2016.79
- Nash, W., Drummond, T. and Birbilis, N. (2018), "A review of deep learning in the study of materials degradation", npj Materials Degradation, 2(1), 1-12. https://doi.org/10.1038/s41529-018-0058-x
- Nayyeri, F., Hou, L., Zhou, J. and Guan, H. (2018), "Foreground-background separation technique for crack detection", Comput.- Aided Civil Infrastr. Eng., 34(6), 457-470. https://doi.org/10.1111/mice.12428
- Prasanna, P., Dana, K., Gucunski, N. and Basily, B. (2012), "Computer-vision based crack detection and analysis", Proceedings of SPIE - The International Society for Optical Engineering, Vol. 8345, pp. 834542. https://doi.org/10.1117/12.915384
- Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L. and Shen, X. (2020), "Image-based concrete crack detection in tunnels using deep fully convolutional networks", Constr. Build. Mater., 234, 117367. https://doi.org/10.1016/j.conbuildmat.2019.117367
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241. https://doi.org/10.1007/978-3-662-54345-0_3
- Russell, B.C., Torralba, A., Murphy, K.P. and Freeman, W.T. (2008), "LabelMe: a database and web-based tool for image annotation", Int. J. Comput. Vision, 77(1-3), 157-173. https://doi.org/10.1007/s11263-007-0090-8
- Salehi, S.S.M., Erdogmus, D. and Gholipour, A. (2017), "Tversky loss function for image segmentation using 3D fully convolutional deep networks", International Workshop on Machine Learning in Medical Imaging, pp. 379-387. https://doi.org/10.1007/978-3-319-67389-9_44
- Spencer Jr., B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S. and Cardoso, M.J. (2017), "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations", In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp. 240-248. https://doi.org/10.1007/978-3-319-67558-9_28
- Tversky, A. (1988), "Features of similarity", Readings in Cognitive Science, 84(4), 290-302. https://doi.org/10.1037/0033-295X.84.4.327
- Xu, Y., Li, S., Zhang, D., Jin, Y., Zhang, F., Li, N. and Li, H. (2018), "Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images", Struct. Control Health Monitor., 25(2), e2075. https://doi.org/10.1002/stc.2075
- Yamaguchi, T. and Hashimoto, S. (2009), "Fast crack detection method for large-size concrete surface images using percolation-based image processing", Mach. Vision Applicat., 21(5), 797-809. https://doi.org/10.1007/s00138-009-0189-8
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Yeum, C.M. and Dyke, S.J. (2015), "Vision-based automated crack detection for bridge inspection", Comput.-Aided Civil Infrastr. Eng., 30(10), 759-770. https://doi.org/10.1111/mice.12141
- Yu, F. and Koltun, V. (2016), "Multi-scale context aggregation by dilated convolutions", arXiv preprint arXiv:1511.07122.
- Zhang, L., Yang, F., Zhang, Y.D. and Zhu, Y.J. (2016), "Road crack detection using deep convolutional neural network", Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, pp. 3708-3712. https://doi.org/doi/10.1109/ICIP.2016.7533052
- Zhao, H., Qin, G. and Wang, X. (2010), "Improvement of canny algorithm based on pavement edge detection", Proceedings of 2010 3rd International Congress on Image and Signal Processing, Yantai, China. https://doi.org/10.1109/CISP.2010.5646923