Acknowledgement
The structural health monitoring data of the long-span bridge are obtained from the organizers of the 1st International Project Competition for Structural Health Monitoring (IPC-SHM), 2020 (http://www.schm.org.cn/#/IPC-SHM, 2020).
References
- Bao, Y., Chen Z., Wei, S., Xu, Y., Tang, Z. and Li, H. (2019a), "The state of the art of data science and engineering in structural health monitoring", Engineering, 5, 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019b), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monitor., 18(2), 401-421. https://doi.org/10.1177/1475921718757405
- Bao, Y., Li, J., Nagayama, T., Xu. Y., Spencer, B.F. and Li, H. (2021), "The 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020): A summary and benchmark problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Boashash, B. and Ouelha, S. (2016), "Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study", Knowledge-Based Syst., 106, 38-50. https://doi.org/10.1016/j.knosys.2016.05.027
- Chang, C.M., Chou, J.Y., Tan, P. and Wang, L. (2017), "A sensor fault detection strategy for structural health monitoring systems", Smart Struct. Syst., Int. J., 20(1), 43-52. https://doi.org/10.12989/sss.2017.20.1.043
- Christian, S., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015), "Going deeper with convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9.
- Dragos, K. and Smarsly, K. (2016), "Distributed adaptive diagnosis of sensor faults using structural response data", Smart Mater. Struct., 25(10), 105019. https://doi.org/10.1088/0964-1726/25/10/105019
- Fu, Y., Peng, C., Gomez, F., Narazaki, Y. and Spencer Jr., B.F. (2019), "Sensor fault management techniques for wireless smart sensor networks in structural health monitoring", Struct. Control Health Monitor., 26(7), e2362. https://doi.org/10.1002/stc.2362
- Huang, H.B., Yi, T.H. and Li, H.N. (2017a), "Sensor fault diagnosis for structural health monitoring based on statistical hypothesis test and missing variable approach", J. Aerosp. Eng., 30(2), B4015003. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000572
- Huang, H.B., Yi, T.H. and Li, H.N. (2017b), "Bayesian combination of weighted principal-component analysis for diagnosing sensor faults in structural monitoring systems", J. Eng. Mech., 143(9), 04017088. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001309
- Krizhevesky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Adv. Neural Inform. Process. Syst., 25.
- Li, L., Liu, G., Zhang, L. and Li, Q. (2019), "Sensor fault detection with generalized likelihood ratio and correlation coefficient for bridge SHM", J. Sound Vib., 442, 445-458. https://doi.org/10.1016/j.ymssp.2015.05.011
- Lo, C., Lynch, J.P. and Liu, M. (2016), "Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks", Mech. Syst. Signal Process., 66, 470-484. https://doi.org/10.1016/j.ymssp.2015.05.011
- Mahapatro, A. and Khilar, P.M. (2013), "Fault diagnosis in wireless sensor networks: A survey", IEEE Commun. Surveys Tutorials, 15(4), 2000-2026. https://doi.org/10.1109/SURV.2013.030713.00062
- Mao, J., Wang, H. and Spencer Jr, B.F. (2020), "Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders", Struct. Health Monitor., 20(4), 1609-1626. https://doi.org/10.1177/1475921720924601
- MATLAB and Deep Learning Toolbox Release (2020b), The MathWorks, Inc., Natick, MA, USA.
- Munir, M., Siddiqui, S.A., Chattha, M.A., Dengel, A. and Ahmed, S. (2019), "FuseAD: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models", Sensors, 19(11), 2451. https://doi.org/10.3390/s19112451
- Pan, S.J. and Yang, Q. (2010), "A survey on transfer learning", IEEE Transact. Knowledge Data Eng., 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191
- Pavelka, A. and Proch, A. (2004), "Algorithm for initialization of neural network weights random numbers in MATLAB", Proceeding: Control Engineering, 2, 453-459.
- Peng, C., Fu, Y. and Spencer Jr., B.F. (2017a), "Sensor fault detection, identification, and recovery techniques for wireless sensor networks: A full-scale study", Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart Structures Technology.
- Peng, Y., Qiao, W., Qu, L. and Wang, J. (2017b), "Sensor fault detection and isolation for a wireless sensor network-based remote wind turbine condition monitoring system", IEEE Transact. Ind. Applicat., 54(2), 1072-1079. https://doi.org/10.1109/TIA.2017.2777925
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C. and Li, F.F. (2015), "ImageNet larger scale visual recognition challenge", Int. J. Comput. Vision, 115, 211-252. https://doi.org/10.1007/s11263-015-0816-y
- Sharma, A.B., Golubchik, L. and Govindan, R. (2010), "Sensor faults: detection methods and prevalence in real-world datasets", ACM Transact. Sensor Networks (TOSN), 6(3), 23. https://doi.org/10.1145/1754414.1754419
- Singla, A., Yuan, L. and Ebrahimi, T. (2016), "Food/non-food image classification and food categorization using pre-trained GoogLeNet Model", MADiMa 16: Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, October, pp. 3-11. https://doi.org/10.1145/2986035.2986039
- Smarsly, K. and Law, K.H. (2014), "Decentralized fault detection and isolation in wireless structural health monitoring systems using analytical redundancy", Adv. Eng. Software, 73, 1-10. https://doi.org/10.1016/j.advengsoft.2014.02.005
- Tang, Z., Chen, Z., Bao, Y. and Li, H. (2018), "Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring", Struct. Control Health Monitor., 26(1), e2296. https://doi.org/10.1002/stc.2296
- Yu, C.B., Hu, J.J., Li, R., Deng, S.H. and Yang, R.M. (2014), "Node fault diagnosis in WSN based on RS and SVM", Proceedings of 2014 International Conference on Wireless Communication and Sensor Network, Wuhan, China, December, pp. 153-156.
- Zhao, C., Sun, X., Sun, S. and Jiang, T. (2011), "Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine", Expert Syst. Applicat., 38(8), 9908-9912. https://doi.org/10.1016/j.eswa.2011.02.043