Acknowledgement
The authors would like to thank the organisers of the 1st International Project Competition for SHM (IPC-SHM, 2020) for generously providing excellent opportunities during the COVID-19 and invaluable data from an actual structure. Special thanks go to Professor Hui Li and Professor Billie F. Spencer Jr., Co-Chairs of IPC-SHM, 2020. This research is also supported by the Key-Area Research and Development Program of Guangdong Province (Project No. 2019B111106001) and National Key Research and Development Program (Project No. 2019YFB1600700).
References
- An, Y.H., Chatzi, E., Sim, S.H., Laflamme, S., Blachowski, B. and Ou, J.P. (2019), "Recent progress and future trends on damage identification methods for bridge structures", Struct. Control Health Monitor., 26(10). https://doi.org/10.1002/stc.2416
- Bao, Y. and Li, H. (2020), "Machine learning paradigm for structural health monitoring", Struct. Health Monitor., 20(4), 1353-1372. https://doi.org/10.1177/1475921720972416
- Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019a), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monitor., 18(2), 401-421. https://doi.org/10.1177/1475921718757405
- Bao, Y.Q., Chen, Z.C., Wei, S.Y., Xu, Y., Tang, Z.Y. and Li, H. (2019b), "The State of the Art of Data Science and Engineering in Structural Health Monitoring", Engineering, 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bengio, Y. and Grandvalet, Y. (2004), "No unbiased estimator of the variance of k-fold cross-validation", J. Mach. Learn. Res., 5, 1089-1105.
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civ. Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chang, P.C., Flatau, A. and Liu, S. (2003), "Health monitoring of civil infrastructure", Struct. Health Monitor., 2(3), 257-267. https://doi.org/10.1177/1475921703036169
- Fan, G., Li, J. and Hao, H. (2019), "Lost data recovery for structural health monitoring based on convolutional neural networks", Struct. Control Health Monitor., 26(10). https://doi.org/10.1002/stc.2433
- Fan, G., Li, J. and Hao, H. (2020), "Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks", Struct. Health Monitor., 20(4), 1373-1391. https://doi.org/10.1177/1475921720916881
- Fu, Y.G., Peng, C., Gomez, F., Narazaki, Y. and Spencer, B.F. (2019), "Sensor fault management techniques for wireless smart sensor networks in structural health monitoring", Struct. Control Health Monitor., 26(7). https://doi.org/10.1002/stc.2362
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition", IEEE Trans. Pattern Anal. Mach. Intell., 37(9), 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
- Hernandez-Garcia, M.R. and Masri, S.F. (2014), "Application of statistical monitoring using latent-variable techniques for detection of faults in sensor networks", J. Intell. Mater. Syst. Struct., 25(2), 121-136. https://doi.org/10.1177/1045389x13479182
- Hou, R. and Xia, Y. (2020), "Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019", J. Sound Vib., 491, 115741. https://doi.org/10.1016/j.jsv.2020.115741
- Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T. and Keutzer, K. (2014), "Densenet: Implementing efficient convnet descriptor pyramids", arXiv preprint arXiv:1404.1869.
- Ioffe, S. and Szegedy, C. (2015), "Batch normalisation: Accelerating deep network training by reducing internal covariate shift", Proceedings of International Conference on Machine Learning, pp. 448-456.
- Jeong, S., Ferguson, M., Hou, R., Lynch, J.P., Sohn, H. and Law, K.H. (2019), "Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring", Adv. Eng. Inf., 42, 1009911. https://doi.org/10.1016/j.aei.2019.100991
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Adv. Neural Inform. Process. Syst., 25, 1097-1105.
- Kullaa, J. (2011), "Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring", Mech. Syst. Sig. Process., 25(8), 2976-2989. https://doi.org/10.1016/j.ymssp.2011.05.017
- Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M. and Kolesnikov, A. (2020), "The open images dataset v4", Int. J. Comput. Vis., 1-26. https://doi.org/10.1007/s11263-020-01316-z
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Lei, X., Sun, L. and Xia, Y. (2020), "Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks", Struct. Health Monitor., 20(4), 2069-2087. https://doi.org/10.1177/1475921720959226
- Li, J., Hao, H., Xia, Y. and Zhu, H.-P. (2014), "Damage detection of shear connectors in bridge structures with transmissibility in frequency domain", Int. J. Struct. Stab. Dyn., 14(02), 1350061. https://doi.org/10.1142/s0219455413500612
- Li, L.L., Liu, G., Zhang, L.L. and Li, Q. (2019), "Sensor fault detection with generalised likelihood ratio and correlation coefficient for bridge SHM", J. Sound Vib., 442, 445-458. https://doi.org/10.1016/j.jsv.2018.10.062
- Lin, T.-Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2017a), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988.
- Lin, Y.Z., Nie, Z.H. and Ma, H.W. (2017b), "Structural damage detection with automatic feature-extraction through deep learning", Comput.-Aided Civ. Infrastruct. Eng., 32(12), 1025-1046. https://doi.org/10.1111/mice.12313
- Liu, G., Li, L.L., Zhang, L.L., Li, Q. and Law, S.S. (2020), "Sensor faults classification for SHM systems using deep learning-based method with Tsfresh features", Smart Mater. Struct., 29(7). https://doi.org/10.1088/1361-665X/ab85a6
- Mao, J.X., Wang, H. and Spencer, B.F. (2020), "Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders", Struct. Health Monitor, 20(4), 1609-1626. https://doi.org/10.1177/1475921720924601
- Mohtasham Khani, M., Vahidnia, S., Ghasemzadeh, L., Ozturk, Y.E., Yuvalaklioglu, M., Akin, S. and Ure, N.K. (2019), "Deep-learning-based crack detection with applications for the structural health monitoring of gas turbines", Struct. Health Monitor., 19(5), 1440-1452. https://doi.org/10.1177/1475921719883202
- Ni, F.T., Zhang, J. and Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Comput.-Aided Civ. Infrastruct. Eng., 35(7), 685-700. https://doi.org/10.1111/mice.12528
- Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Comput.-Aided Civ. Infrastruct. Eng., 34(10), 843-858. https://doi.org/10.1111/mice.12476
- Pan, S.J. and Yang, Q.A. (2010), "A Survey on Transfer Learning", IEEE Trans. Knowl. Data. Eng., 22(10), 1345-1359. https://doi.org/10.1109/Tkde.2009.191
- Ramachandran, P., Zoph, B. and Le, Q.V. (2017), "Searching for activation functions", arXiv preprint arXiv:1710.05941.
- Rao, A.R.M., Kasireddy, V., Gopalakrishnan, N. and Lakshmi, K. (2015), "Sensor fault detection in structural health monitoring using null subspace-based approach", J. Intell. Mater. Syst. Struct., 26(2), 172-185. https://doi.org/10.1177/1045389x14522534
- Rawat, W. and Wang, Z. (2017), "Deep convolutional neural networks for image classification: A comprehensive review", Neural Comput., 29(9), 2352-2449. https://doi.org/10.1162/NECO_a_00990
- Rodriguez, J.D., Perez, A. and Lozano, J.A. (2009), "Sensitivity analysis of k-fold cross validation in prediction error estimation", IEEE Trans. Pattern Anal. Mach. Intell., 32(3), 569-575. https://doi.org/10.1109/TPAMI.2009.187
- Sharifi, R., Kim, Y. and Langari, R. (2010), "Sensor fault isolation and detection of smart structures", Smart Mater. Struct., 19(10), 105001. https://doi.org/10.1088/0964-1726/19/10/105001
- Smarsly, K. and Law, K.H. (2014), "Decentralised fault detection and isolation in wireless structural health monitoring systems using analytical redundancy", Adv. Eng. Software, 73, 1-10. https://doi.org/10.1016/j.advengsoft.2014.02.005
- Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Eng., 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sun, Z., Zou, Z.L. and Zhang, Y.F. (2017), "Utilisation of structural health monitoring in long-span bridges: Case studies", Struct. Control Health Monitor., 24(10). https://doi.org/10.1002/stc.1979
- Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. (2017), "Inception-v4, inception-resnet and the impact of residual connections on learning", Proceedings of the AAAI Conference on Artificial Intelligence.
- Tang, Z.Y., Chen, Z.C., Bao, Y.Q. and Li, H. (2019), "Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring", Struct. Control Health Monitor., 26(1). https://doi.org/10.1002/stc.2296
- Wu, R.T. and Jahanshahi, M.R. (2019), "Deep convolutional neural network for structural dynamic response estimation and system identification", J. Eng. Mech., 145(1). https://doi.org/10.1061/(asce)em.1943-7889.0001556
- Xia, Y., Chen, B., Weng, S., Ni, Y.-Q. and Xu, Y.-L. (2012), "Temperature effect on vibration properties of civil structures: a literature review and case studies", J. Civil Struct. Health Monitor., 2(1), 29-46. https://doi.org/10.1007/s13349-011-0015-7
- Xia, Y., Lei, X., Wang, P., Liu, G. and Sun, L. (2020), "Long-term performance monitoring and assessment of concrete beam bridges using neutral axis indicator", Struct. Control Health Monitor., 27(12). https://doi.org/10.1002/stc.2637
- Yeum, C.M. and Dyke, S.J. (2015), "Vision-Based Automated Crack Detection for Bridge Inspection", Comput.-Aided Civ. Infrastruct. Eng., 30(10), 759-770. https://doi.org/10.1111/mice.12141
- Yi, T.H., Li, H.N., Song, G.B. and Guo, Q. (2016), "Detection of shifts in GPS measurements for a long-span bridge using CUSUM chart", Int. J. Struct. Stab. Dyn., 16(04), 1640024. https://doi.org/10.1142/S0219455416400241
- Yu, Y., Wang, C.Y., Gu, X.Y. and Li, J.C. (2018), "A novel deep learning-based method for damage identification of smart building structures", Struct. Health Monitor., 18(1), 143-163. https://doi.org/10.1177/1475921718804132
- Zhang, A., Wang, K.C.P., Li, B.X., Yang, E.H., Dai, X.X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network", Comput.-Aided Civil Infrastruct. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297
- Zhang, Y.Q., Miyamori, Y., Mikami, S. and Saito, T. (2019), "Vibration-based structural state identification by a 1-dimensional convolutional neural network", Comput.-Aided Civ. Infrastruct. Eng., 34(9), 822-839. https://doi.org/10.1111/mice.12447