Acknowledgement
Financial support for this study was provided by the National Natural Science Foundation of China [Grant Nos. 52008138, 51638007, U1711265, and 51921006], National Key R&D Program of China [Grant No. 2019YFC1511102], China Postdoctoral Science Foundation [Grant Nos. BX20190102 and 2019M661286], and Heilongjiang Postdoctoral Funding [Grant Nos. LBH-TZ2016 and LBH-Z19064].
References
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003), "Analysis of edge-detection techniques for crack identification in bridges", J. Comput. Civil Eng., 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- Agrawal, A. and Mittal, N. (2020), "Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy", Visual Comput., 36(2), 405-412. https://doi.org/10.1007/s00371-019-01630-9
- Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017), "Segnet: a deep convolutional encoder-decoder architecture for image segmentation", IEEE Transact. Pattern Anal. Mach. Intell., 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black-box images", Comput.-Aided Civil Infrastr. Eng., 34(8), 713-727. https://doi.org/10.1111/mice.12440
- Bao, Y. and Li, H. (2020), "Machine learning paradigm for structural health monitoring", Struct. Health Monitor., 1475921720972416. https://doi.org/10.1177/1475921720972416
- Bao, Y., Chen, Z., Wei, S., Tang, Z., Xu, Y. and Li, H. (2019), "The state of the art of data science and engineering in structural health monitoring", Eng., 5(2), 234-242. https://doi.org/10.1016/j.eng.2018.11.027
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer, B.F. Jr. and Li, H. (2021), "The 1st international project competition for structural health monitoring (IPC-SHM, 2020): a summary and benchmark problem", Struct. Health Monitor., 14759217211006485. https://doi.org/10.1177/14759217211006485
- Beckman, G.H., Polyzois, D. and Cha, Y. (2019), "Deep learning-based automatic volumetric damage quantification using depth camera", Automat. Constr., 99, 114-124. https://doi.org/10.1016/j.autcon.2018.12.006
- Bengio, Y. (2012), "Practical recommendations for gradient-based training of deep architectures", Neural Networks: Tricks of the Trade, Springer, Berlin, Heidelberg.
- Benz, C., Debus, P., Ha, H.K. and Rodehorst, V. (2019), "Crack segmentation on UAS-based imagery using transfer learning", Proceedings of 2019 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1-6. https://doi.org/10.1109/IVCNZ48456.2019.8960998
- Bloice, M.D., Roth, P.M. and Holzinger, A. (2019), "Biomedical image augmentation using Augmentor", Bioinformatics, 35(21), 4522-4524. https://doi.org/10.1093/bioinformatics/btz259
- Castro, E., Cardoso, J.S. and Pereira, J.C. (2018), "Elastic deformations for data augmentation in breast cancer mass detection", Proceedings of IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA, March, pp. 230-234. https://doi.org/10.1109/BHI.2018.8333411
- Cha, Y., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Chen, F. and Jahanshahi, M.R. (2018), "NB-CNN: deep learning-based crack detection using convolutional neural network and naive Bayes data fusion", IEEE Transact. Indust. Electro., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844
- Chen, F., Jahanshahi, M.R., Wu, R. and Joffe, C. (2017a), "A texture-based video processing methodology using Bayesian data fusion for autonomous crack detection on metallic surfaces", Comput.-Aided Civil Infrastr. Eng., 32(4), 271-287. https://doi.org/10.1111/mice.12256
- Chen, L., Papandreou, G., Schroff, F. and Adam, H. (2017b), "Rethinking atrous convolution for semantic image segmentation", arXiv preprint, http://arxiv.org/abs/1706.05587.
- Choi, W. and Cha, Y. (2020), "SDDNet: Real-time crack segmentation", IEEE Transact. Indust. Electro., 67(9), 8016-8025. https://doi.org/10.1109/TIE.2019.2945265
- Dong, C.Z. and Catbas, F.N. (2020), "A review of computer vision-based structural health monitoring at local and global levels", Struct. Health Monitor., 20(2), 692-743. https://doi.org/10.1177/1475921720935585
- Fan, R., Bocus, M.J., Zhu, Y., Jiao, J., Wang, L., Ma, F., Cheng, S. and Liu, M. (2019), "Road crack detection using deep convolutional neural network and adaptive thresholding", IEEE Intelligent Vehicles Symposium (IV), Paris, France, June, pp. 474-479. https://doi.org/10.1109/IVS.2019.8814000
- Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z. and Lu, H. (2019), "Dual attention network for scene segmentation", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146-3154.
- Gerstner, W. and Kistler, W.M. (2002), Spiking Neuron Models: Single Neurons, Populations, Plasticity, Cambridge University Press.
- Gidon, A., Zolnik, T.A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., Holtkamp, M., Vida, I. and Larkum, M.E. (2020), "Dendritic action potentials and computation in human layer 2/3 cortical neurons", Science, 367(6473), 83-87. https://doi.org/10.1126/science.aax6239
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December, pp. 770-778.
- Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017), "Densely connected convolutional networks", Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition CVPR 2017, January, pp. 2261-2269.
- Huang, H., Li, Q. and Zhang, D. (2018), "Deep learning based image recognition for crack and leakage defects of metro shield tunnel", Tunnel. Undergr. Space Technol., 77, 166-176. https://doi.org/10.1016/j.tust.2018.04.002
- IPC-SHM (2020), http://www.schm.org.cn/#/IPC-SHM,2020/dataDownload
- Jahanshahi, M.R. and Masri, S.F. (2013), "A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation", Smart Mater. Struct., 22(3), 035019. https://doi.org/10.1088/0964-1726/22/3/035019
- Jahanshahi, M.R., Kelly, J.S., Masri, S.F. and Sukhatme, G.S. (2009), "A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures", Struct. Infrastr. Eng., 5(6), 455-486. https://doi.org/10.1080/15732470801945930
- Jahanshahi, M.R., Masri, S.F., Padgett, C.W. and Sukhatme, G.S. (2013a), "An innovative methodology for detection and quantification of cracks through incorporation of depth perception", Mach. Vision Applicat., 24(2), 227-241. https://doi.org/10.1007/s00138-011-0394-0
- Jahanshahi, M.R., Jazizadeh, F., Masri, S.F. and Becerik-Gerber, B. (2013b), "Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor", J. Comput. Civil Eng., 27(6), 743-754. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245
- Jiang, S. and Zhang, J. (2020), "Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system", Comput.-Aided Civil Infrastr. Eng., 35(6), 549-564. https://doi.org/10.1111/mice.12519
- Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118, 103291. https://doi.org/10.1016/j.autcon.2020.103291
- Kong, X. and Li, J. (2018), "Vision-based fatigue crack detection of steel structures using video feature tracking", Comput.-Aided Civil Infrastr. Eng., 33(9), 783-799. https://doi.org/10.1111/mice.12353
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceedings of International Conference on Neural Information Processing Systems, pp. 1097-1105.
- Li, S., Zhao, X. and Zhou, G. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 34(7), 616-634. https://doi.org/10.1111/mice.12433
- Li, G., Ren, X., Qiao, W., Ma, B. and Li, Y. (2020), "Automatic bridge crack identification from concrete surface using resnext with postprocessing", Struct. Control Health Monitor., 27(11), e2620. https://doi.org/10.1002/stc.2620
- Lim, R.S., La, H.M. and Sheng, W. (2014), "A robotic crack inspection and mapping system for bridge deck maintenance", IEEE Transactions on Automation Science and Engineering, 11(2), 367-378. https://doi.org/10.1109/TASE.2013.2294687
- Lin, F., Yang, J., Shu, J. and Scherer, R.J. (2019), "Crack semantic segmentation using the U-net with full attention strategy", arXiv preprint arXiv:2104.14586.
- Long, J., Shelhamer, E. and Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440.
- Makantasis, K., Protopapadakis, E., Doulamis, A., Doulamis, N. and Loupos, C. (2015), "Deep convolutional neural networks for efficient vision based tunnel inspection", Proceedings of 2015 IEEE 11th International Conference on Intelligent Computer Communication and Processing ICCP 2015, Cluj-Napoca, Romania, September, pp. 335-342. https://doi.org/10.1109/ICCP.2015.7312681
- Mokhtari, S., Wu, L. and Yun, H.B. (2017), "Statistical selection and interpretation of imagery features for computer vision-based pavement crack-detection systems", J. Perform. Constr. Facil., 31(5), 04017054. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001006
- Mukkamala, M.C. and Hein, M. (2017), "Variants of RMSprop and Adagrad with logarithmic regret bounds", Proceedings of International Conference on Machine Learning, pp. 2545-2553.
- Ni, F., Zhang, J. and Chen, Z. (2019), "Pixel-level crack delineation in images with convolutional feature fusion", Struct. Control Health Monitor., 26(1), 1-18. https://doi.org/10.1002/stc.2286
- Nishikawa, T., Yoshida, J., Sugiyama, T. and Fujino, Y. (2012), "Concrete crack detection by multiple sequential image filtering", Comput.-Aided Civil Infrastr. Eng., 27(1), 29-47. https://doi.org/10.1111/j.1467-8667.2011.00716.x
- Pan, Y., Zhang, G. and Zhang, L. (2020), "A spatial-channel hierarchical deep learning network for pixel-level automated crack detection", Automat. Constr., 119, 103357. https://doi.org/10.1016/j.autcon.2020.103357
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: convolutional networks for biomedical image segmentation", Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
- Shi, Y., Cui, L., Qi, Z., Meng, F. and Chen, Z. (2016), "Automatic road crack detection using random structured forests", IEEE Transactions on Intelligent Transportation Systems, 17(12), 3434-3445. https://doi.org/10.1109/TITS.2016.2552248
- Simard, P.Y., Steinkraus, D. and Platt, J.C. (2003), "Best practices for convolutional neural networks applied to visual document analysis", Proceedings of the International Conference on Document Analysis and Recognition ICDAR, January, pp. 958-963.
- Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint, arXiv: 1409.1556.
- Soukup, D. and Huber-Mork, R. (2014), "Convolutional neural networks for steel surface defect detection from photometric stereo images", (Bebis G. et al. eds.), In: Advances in Visual Computing, pp. 668-677.
- Spencer, B.F. Jr, Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015), "Going deeper with convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9.
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016), "Rethinking the inception architecture for computer vision", Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December, pp. 2818-2826.
- VanRullen, R., Guyonneau, R. and Thorpe, S.J. (2005), "Spike times make sense", Trends Neurosci., 28(1), 1-4. https://doi.org/10.1016/j.tins.2004.10.010
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2017), "Attention is all you need", In: Advances in Neural Information Processing Systems, pp. 5998-6008.
- Wan, H., Gao, L., Su, M., Sun, Q. and Huang, L. (2021), "Attention-based convolutional neural network for pavement crack detection", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2021/5520515
- Wang, Z. and Cha, Y. (2020), "Unsupervised deep learning approach using a deep auto-encoder with an one-class support vector machine to detect structural damage", Struct. Health Monitor., 20(1), 406-425. https://doi.org/10.1177/1475921720934051
- Wang, D., Dong, Y., Pan, Y. and Ma, R. (2020), "Machine vision-based monitoring methodology for the fatigue cracks in U-ribto-deck weld seams", IEEE Access, 8, 94204-94219. https://doi.org/10.1109/ACCESS.2020.2995276
- Xu, Y., Li, S., Zhang, D., Jin, Y., Zhang, F., Li, N. and Li, H. (2018), "Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images", Struct. Control Health Monitor., 25(2), e2075. https://doi.org/10.1002/stc.2075
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2019a), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images", Struct. Health Monitor., 18(3), 653-674. https://doi.org/10.1177/1475921718764873
- Xu, Y., Wei, S., Bao, Y. and Li, H. (2019b), "Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network", Struct. Control Health Monitor., 26(3), e2313. https://doi.org/10.1002/stc.2313
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Yeum, C.M. and Dyke, S.J. (2015), "Vision-based automated crack detection for bridge inspection", Comput.-Aided Civil Infrastr. Eng., 30(10), 759-770. https://doi.org/10.1111/mice.12141
- Yeum, C.M., Dyke, S.J. and Ramirez, J. (2018), "Visual data classification in post-event building reconnaissance", Eng. Struct., 155, 16-24. https://doi.org/10.1016/j.engstruct.2017.10.057
- Zhang, S.Q. and Zhou, Z.H. (2020), "Flexible transmitter network", arXiv preprint, arXiv:2004.03839.
- Zhang, L., Yang, F., Daniel Zhang, Y. and Zhu, Y.J. (2016), "Road crack detection using deep convolutional neural network", Proceedings of International Conference on Image Processing ICIP, August, pp. 3708-3712. https://doi.org/10.1109/ICIP.2016.7533052
- Zhang, X., Rajan, D. and Story, B. (2019), "Concrete crack detection using context-aware deep semantic segmentation network", Comput.-Aided Civil Infrastr. Eng., 34(11), 951-971. https://doi.org/10.1111/mice.12477