DOI QR코드

DOI QR Code

전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용

Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode

  • 왕설 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 시키 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 김창준 (경상국립대학교 화학공학과 및 그린에너지 연구소)
  • Wang, Xue (Department of Chemical Engineering and RIGET, Gyeongsang National University) ;
  • Shi, Ke (Department of Chemical Engineering and RIGET, Gyeongsang National University) ;
  • Kim, Chang-Joon (Department of Chemical Engineering and RIGET, Gyeongsang National University)
  • 투고 : 2021.08.24
  • 심사 : 2021.09.13
  • 발행 : 2022.02.01

초록

그래핀은 부피에 비해 표면적이 넓고 뛰어난 기계적 물성과 전기전도성을 가지며 생체적합성이 우수하다. 본 연구에서는 전기화학적 방법을 이용하여 indium tin oxide (ITO) 글래스 슬라이드 표면에 산화그래핀을 증착·환원시킨 전극을 제작하였고 그래핀으로 표면 개질된 ITO의 전기화학적 특성을 조사하였다. 산화그래핀의 증착과 환원에 순환전압전류법을 사용하였다. 주사전자현미경과 에너지 분산형 X-선 분광법을 사용하여 그래핀이 코팅된 ITO 표면을 관찰하였다. 순환전압전류법과 전기화학 임피던스 분광법을 사용하여 제작된 전극들의 전기화학 특성을 평가하였다. 사이클 수와 주사 속도는 산화그래핀 증착과 환원도에 상당한 영향을 미쳤으며 제작된 전극의 전기화학 특성도 달랐다. ITO 전극에 비하여 그래핀으로 표면 개질된 ITO는 전극 계면에서의 전하 전달 저항이 낮았고 더 많은 전류를 생산하였다. 그래핀으로 표면 개질된 ITO 표면에 고정화된 포도당 산화효소는 포도당을 산화시키며 성공적으로 전자들을 생성하였다.

Graphene has a large surface area to volume ratio and good mechanical and electrical property and biocompatibility. This study described the electrochemical deposition and reduction of graphene oxide on the surface of indium tin oxide (ITO) glass slide and electrochemical characterization of graphen-modified ITO. Cyclic voltammetry was used for the deposition and reduction of graphene oxide. The surface of graphen-coated ITO was characterized using scanning electron microscopy and energy dispesive X-ray spectroscopy. The electrodes were evaluated by performing cyclic voltammetry and electrochemical impedance spectroscopy. The number of cycles and scan rate greatly influenced on the coverage and the degree of reduction of graphene oxide, thus affecting the electrochemical properties of electrodes. Modification of ITO with graphene generated higher current with lower charge transfer resistance at the electrode-electrolyte interface. Glucose oxidase was immobilized on the graphene-modified ITO and has been found to successfully generate electrons by oxidizing glucose.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2020R1F1A1054433, 2017R1D1A1B03029032).

참고문헌

  1. Zebda, A., Alcaraz, J.-P., Vadgama, P., Shleev, S., Minteer, S. D., Boucher, F., Cinquin, P. and Martin, D. K., "Challenges for Successful Implantation of Biofuel Cells," Bioelectrochemistry, 124, 57-72(2018). https://doi.org/10.1016/j.bioelechem.2018.05.011
  2. Liu, Y., Li, X., Chen, J. and Yuan, C., "Micro/nono Electrode Array Sensors: Advances in Fabrication and Emerging Applications in Bioanalysis," Front. Chem., 8, 573865(2020). https://doi.org/10.3389/fchem.2020.573865
  3. Cosnier, S., Goff, A. L. and Holzinger, M., "Towards Glucose Biofuel Cells Implanted in Human Body for Powering Artificial Organs: Review," Electrochem. Commun., 38, 19-23(2014). https://doi.org/10.1016/j.elecom.2013.09.021
  4. Masikini, M., Ghica, M. E., Baker, P. G. L., Iwuoha, E. I. and Brett, C. M., "Electrochemical Sensor Based on Multi-walled Carbon Nanotube/gold Nanoparticle Modified Glassy Carbon Electrode for Detection of Estradiol in Environmental Samples," Electroanalysis, 31, 1-10(2019). https://doi.org/10.1002/elan.201980131
  5. Oliveira, T. M. B. F. and Morais, S., "New Generation of Electrochemical Sensors Based Multi-walled Carbon Nanotubes," Appl. Sci., 8, 1925(2018). https://doi.org/10.3390/app8101925
  6. Gao, F., Viry, L., Maugey, M. M., Poulin, P. and Mano, N., "Engineering Hybrid Nanotube Wires for High-power Biofuel Cells," Nat. Commun., 1, 2(2010). https://doi.org/10.1038/ncomms1000
  7. Lipinska, W., Grochowska, K. and Siuzdak, K., "Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors," Nanomaterials, 11, 1156(2021). https://doi.org/10.3390/nano11051156
  8. Hitaishi, V. P., Mazurenko, L., Murali, A. V., Poulpiquet, A., Coustillier, G. Delaporte, P. and Lojou, E., "Nanosecond Laser-fabricated Monolayer of Gold Nanopartilces on ITO for Bioelectrocatalysis," Front. Chem., 8, 431(2020). https://doi.org/10.3389/fchem.2020.00431
  9. Ambrosi, A., Chua, C. K., Latiff, N. M., Loo, A. H., Wong, C. H. A., Eng, A. Y. S., Bonanni, A. and Pumera, M., "Graphene and Its Electrochemistry-an Update," Chem. Soc. Rev, 45, 2458-2493(2016). https://doi.org/10.1039/c6cs00136j
  10. Basirun, W. J., Sookhakian, M., Baradaran, S., Mahmoudian, M. R. and Ebadi, M, "Solid-phase Electrochemical Reduction of Graphene Oxide Films in Alkaline Solution," Nanoscale. Res, Lett., 8, 397(2013). https://doi.org/10.1186/1556-276X-8-397
  11. Biswal, H.J., Vundavillu, P.R. and Gupta, A., "Perspective-electrodeposition of graphene reinforced metal matrix composites for enhanced mechanical and physical properties: a review," J. Electorchem, Soc., 167, 146501(2020). https://doi.org/10.1149/1945-7111/abbf29
  12. Yang, S., Lu, Z., Luo, S., Liu, C. and Tang, Y., "Direct electrodeposition of a biocomposite consisting of recuced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose," Microchim. Acta. 180, 127-135(2013). https://doi.org/10.1007/s00604-012-0911-5
  13. Hilder, M., Winther-Jensen, B., Li, D., Forsyth, M. and MacFarlane, D.R., "Direct electro-deposition of graphene from aqueous suspensions," Phys. Chem. Chem. Phys., 13, 9187-9193(2011). https://doi.org/10.1039/c1cp20173e
  14. Li, Yan, Martens, I., Cheung, K. C. and Bizzotto, D., "Electrodeposition of Reduced Graphene Oxide Onto Gold Electrodes: Creating Thin Electrochemically Active and Optically Transparent Overlayers," Electrochim. Acta, 319, 649-656(2019). https://doi.org/10.1016/j.electacta.2019.07.004
  15. Garcia-Gomez, A., Duarte, R. G., Eugenio, S., Silva, T. M., Carmezim, M. J. and Montemor, M. F., "Fabrication of Electrochemically Reduced Graphene Oxide/cobalt Oxide Composite for Charge Storage Electrodes," J. Electroanal. Chem., 755, 151-157(2015). https://doi.org/10.1016/j.jelechem.2015.07.053
  16. Mani, V., Devadas, B. and Chen, S.-M., "Direct Electrochemistry of Glucose Oxidase at Electrochemically Reduced Graphene Oxide-multiwalled Carbon Nanotubes Hybrid Material Modified Electrode for Glucose Biosensor," Biosens. Bioelectron., 41, 309-315(2013). https://doi.org/10.1016/j.bios.2012.08.045
  17. Zhu, W., Gao, H., Zheng, F., Huang, T., Wu, F. and Wang, H., "Electrodeposition of Graphene by Cyclic Voltammetry on Nickel Electrodes for Microbial Fuel Cells Applications," Int. J. Energy Res., 1-11(2019).
  18. Yang, J., Strickler, J. R. and Gunasekaran, S., "Indium Tin Oxide-coated Glass Modified with Reduced Graphene Oxide Sheets and Gold Nanoparticles as Disposable Working Electrodes for Dopamine Sensing in Meat Samples," Nanoscale., 4, 4594-4602(2012). https://doi.org/10.1039/c2nr30618b
  19. Haque, A.-M. J., Park, H., Sung, D., Jon, S., Choi, S. Y. and Kim, K., "An Electrochemically Reduced Graphene Oxide-based Electrochemical Immunosensing Platform for Ultrasensitive Antigen Detection," Anal. Chem., 84, 1871-1878(2012). https://doi.org/10.1021/ac202562v
  20. Moghazi, M. A. A., Shareef, S. A., Wong, H. Y. M. and Zaman, M., "Synthesis of Graphene on Conducting Substrate by Electrochemical Deposition Method," Am. J. Appl. Sci., 14, 324-334(2017).
  21. Jeon, W.-Y., Choi, Y.-B. and Kim, H.-H., "Disposable Non-enzymatic Glucose Sensors Using Screen-printed Nickel/carbon Composites on Indium Tin Oxide Electrodes," Sensors., 15, 31083-31091(2015). https://doi.org/10.3390/s151229846
  22. Chen, L., Tang, Y., Wang, K., Liu, C. and Luo, S., "Direct Electrodeposition of Reduced Graphene Oxide on Glassy Carbon Electrode and Its Electrochemical Application," Electrochem. Commun., 13, 133-137(2011). https://doi.org/10.1016/j.elecom.2010.11.033
  23. Wang, Z., Zhou, X., Zhang, J., Boey, F. and Zhang, H., "Direct Electrochemical Reduction of Single-layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase," J. Phys. Chem. Lett., 113, 14071-14075(2009). https://doi.org/10.1021/jp906348x
  24. Yang, J., Strickler, J. R. and Gunasekaran, S., "Indium Tin Oxide-coated Glass Modified with Reduced Graphene Oxide Sheets and Gold Nanoparticles as Disposable Working Electrodes for Dopamine Sensing in Meat Samples", Nanoscale, 4, 4094-4602(2012).
  25. Dharuman, V., Hahn, J. H., Jayakumar, K. and Teng, W., "Electrochemically Reduced Graphene-gold Nano Particle Composite on Indium Tin Oxide for Label Free Immuno Sensing of Estradiol," Electrochim. Acta, 114, 590-597(2013). https://doi.org/10.1016/j.electacta.2013.10.128
  26. Ambrosi, A., Chua, C. K., Bonanni, A. and Pumera, M., "Electrochemistry of Graphene and Related Materials," Chem. Rev, 114, 7150-7188(2014). https://doi.org/10.1021/cr500023c
  27. Rui, B., Yang, M., Zhang, L., Jia, Y., Shi, Y., Histed, R., Liao, Y., Xie, J., Lei, F. and Fan, L., "Reduced Graphene Oxide-modified Biochar Electrodes via Electrophoretic Deposition with High Rate Capability for Supercapacitors," J. Appl. Electrochem., 50, 407-420(2020). https://doi.org/10.1007/s10800-020-01397-1
  28. Pham, H. D., Pham, V. H., Oh, E.-S., Chung, J. S. and Kim, S., "Synthesis of Polypyrrol-reduced Graphene Oxide Composites by In-situ Photopolymerization and Its Application as a Super-capacitor Electrode," Korean J. Chem. Eng., 29, 125-129(2012). https://doi.org/10.1007/s11814-011-0145-y
  29. Glass, D. E. and Prakash, G. K., "Effect of pH on the Reduction of Graphene Oxide on Its Structure and Oxygen Reduction Capabilities in the Alkaline Media," Electroanalysis, 30, 1-9(2018). https://doi.org/10.1002/elan.201880101
  30. Cui, F. and Zhang, X., "A Method Based on the Electrodeposition of Reduced Graphene Oxide on Glassy Carbon Electrode for Sensitive Detection of Theophylline," J. Solid State Electrochem., 17, 167-173(2013). https://doi.org/10.1007/s10008-012-1867-4
  31. Brainina, K. Z., Tarasov, A. V. and Vidrevich, M. B., "Silver Chloride/ferricyanide-based Quasi-reference Electrode for Potentiomeric Sensing Applications," Chemosensors, 8, 15(2020). https://doi.org/10.3390/chemosensors8010015
  32. Gong, K., Xu, F., Grunewald, J. B., Ma, X., Zhao, Y., Gu, S. and Yan, Y., "All-soluble All-iron Aqueous Redox-flow Battery," ACS Energy Lett., 1, 89-93(2016). https://doi.org/10.1021/acsenergylett.6b00049
  33. Szroeder, P., Tsierkezos, N.G., Walczyk, M., Strupinski, W., Gorska-Pukownik, A., Strzelecki, J., Wiwatowski, K., Scharff, P. and Ritter, U., "Insights Into Electrocatalytic Activity of Epitaxial Graphene on SiC from Cyclic Voltammetry and ac Impedance Spectroscopy," J. Solid State Electrochem., 18, 2555-2562(2014). https://doi.org/10.1007/s10008-014-2512-1
  34. Pruna, A. L., Rosas-Laverde, N. M. and Mataix, D. B., "Effect of Deposition Parameters on Electrochemical Properties of Polypyrrol-graphene Oxide Films," Materials, 13, 624(2020). https://doi.org/10.3390/ma13030624
  35. Azman, N. Z. M., Zainai, P. N. S. and Ahmad, S. A. A., "Enhancement the Elctrochemical Conductivity of a Modified Reduced Graphene Oxide/calixarene Screen-printed Electrode Using Response Surface Methodology," Plos One, 15, e0234148(2020). https://doi.org/10.1371/journal.pone.0234148
  36. Donini, C. A., Silva, M. K. L., Bronzato, G. R., Leao, A. L. and Cesarino, I., "Evaluation of a Biosensor Based on Reduced Graphene Oxide and Glucose Oxidase Enzyme on the Monitoring of Second-generation Ethanol Production," J. Solid State Electrochem., 24, 2011-2018(2020). https://doi.org/10.1007/s10008-019-04471-7
  37. Haque, S. Nasa, A., Inamuddin, and Rahman, M. M, "Applications of Chitosan (CHI)-reduced Graphene Oxide (rGO)-polyaniline (PAni) Conducting Composite Electrode for Energy Generation in Glucose Biofuel Cells," Sci. Rep., 10, 10428(2020). https://doi.org/10.1038/s41598-020-67253-6