DOI QR코드

DOI QR Code

Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출

Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode

  • 송민정 (서경대학교 나노융합공학과)
  • Song, Min-Jung (Department of Nano Convergence Engineering, Seokyeong University)
  • 투고 : 2021.07.28
  • 심사 : 2021.08.30
  • 발행 : 2022.02.01

초록

최근 웨어러블 디바이스에 대한 수요가 증가하면서 유연 전극 소재 개발에 대한 다양한 연구들이 진행되고 있다. 특히, 헬스케어용 웨어러블 센서들은 체온이나 심장 박동, 혈당, 혈중 산소 농도 등 신체 정보들의 실시간·지속적인 모니터링과 정확한 진단, 검출이 가능해야 하기 때문에 고성능 유연 전극 소재의 개발이 무엇보다 중요하다. 본 연구에서는 탄소나노튜브 섬유(carbon nanotube fiber; CNT fiber) 기반의 유연 전극 소재의 성능을 개선시키기 위해 CNT fiber 위에 전기화학적 중합(electrochemical polymerization) 공정을 통해 polyaniline (PANI) layer를 합성하고, 이에 대한 전기화학적 특성 분석과 비효소적 글루코스(glucose) 검출 특성을 확인하였다. 제작된 PANI/CNT fiber 전극의 표면 분석은 주사전자 현미경(SEM)을 이용하여 진행되었으며, 전극의 전기화학적 특성 및 글루코스에 대한 센싱 성능은 시간대전류법(CA)과 순환전압 전류법(CV), 전기화학 임피던스법(EIS)을 이용하여 분석되었다. PANI/CNT fiber 전극의 전기화학적 특성은 bare CNT fiber 전극에 비해 작은 electron transfer resistance와 낮은 peak separation potential, 증가된 전극 면적을 나타내며, 이런 향상된 특성들 덕분에 글루코스 검출에 대한 센싱 성능이 개선되었다. 따라서, 본 연구를 기반으로 다양한 나노구조체를 도입하고 접목을 통해 고성능 CNT fiber 기반의 유연 전극 소재 개발이 가능할 것으로 기대된다.

As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 ㎂/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.

키워드

과제정보

본 연구는 2021년도 서경대학교 교내연구비 지원에 의하여 이루어졌음.

참고문헌

  1. Lee, S. M. and Lee, D., "Healthcare Wearable Devices: An Analysis of Key Factors for Continuous Use Intention," Serv. Bus., 14, 503-531(2020). https://doi.org/10.1007/s11628-020-00428-3
  2. Liu, J., Liu, M., Bai, Y., Zhang, J. Liu, H. and Zhu, W., "Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring," Sensors, 20, 4009(2020). https://doi.org/10.3390/s20144009
  3. Lian, Y., Wang, M., Yang, X., Li, Z., Yang, F., Wang, Y., Tai, H., Liao, Y., Wu, J., Wang, X., Jiang, Y. and Tao, G., "A Multifunctional Wearable E-textile via Integrated Nanowire-coated Fabrics," J. Mater. Chem. C, 8, 8399-8409(2020). https://doi.org/10.1039/d0tc00372g
  4. Singha, K., Kumar, J. and Pandit, P., "Recent Advancements in Wearable & Smart Textiles: An Overview," Mater. Today Proc., 16, 1518-1523(2019). https://doi.org/10.1016/j.matpr.2019.05.334
  5. Hatamie, A., Angizi, S., Kumar, S., Pandey, C. M., Simchi, A., Willander, M. and Malhotra, B. D., "Review - Textile Based Chemical and Physical Sensors for Healthcare Monitoring," J. Electrochem. Soc., 167, 037546(2020). https://doi.org/10.1149/1945-7111/ab6827
  6. Chuang, M. C., Windmiller, J. R., Santhosh, P., Pamirez, G. V., Galik, M., Chou, T. Y. and Wang, J., "Textile-based Electrochemical Sensing: Effect of Fabric Substrate and Detection of Nitroaromatic Explosives," Electroanalysis, 22, 2511-2518(2010). https://doi.org/10.1002/elan.201000434
  7. Oueiny, C., Berlioz, S. and Perrin, F. X., "Carbon Nanotube-polyaniline Composites," Prog. Polym. Sci., 39, 707-748(2014). https://doi.org/10.1016/j.progpolymsci.2013.08.009
  8. Liu, Y., Sun, G., Jiang, C., Zheng, X. T., Zheng, L. and Li, C. M., "Highly Sensitive Detection of Hydrogen Peroxide at a Carbon Nanotube Fiber Microelectrode Coated with Palladium Nanoparticles," Microchim. Acta, 181, 63-70(2014). https://doi.org/10.1007/s00604-013-1066-8
  9. Jiangtao, D., Zhang, X., Yong, Z., Zhang, Y., Li, D., Li, R. and Li, Q., "Carbon-nanotube Fibers for Wearable Devices and Smart Textiles," Adv. Mater., 28, 10529-10538(2016). https://doi.org/10.1002/adma.201601186
  10. Jung, C., Liu, W., Hao, H., Wang, H., Meng, F. and Lau, D., "Regenerated and Rotation-induced Cellulose-wrapped Oriented CNT Fibers for Wearable Multifunctional Sensors," Nanoscale, 12, 16305-16314(2020). https://doi.org/10.1039/d0nr03684f
  11. Cho, S. Y., Yu, H., Choi, J., Kang, H., Park, S., Jang, J. S., Hong, H. J., Kim, I. D., Lee, S. K., Jeong, H. S. and Jung, H. T., "Continuous Meter-scale Synthesis of Weavable Tunicate Cellulose/ Carbon Nanotube Fibers for High Performance Wearable Sensors," ACS Nano, 13, 9332-9341(2019). https://doi.org/10.1021/acsnano.9b03971
  12. Shoaie, N., Daneshpour, M., Azimzadeh, M., Mahshid, S., Khoshfetrat, S. M., Jahanpeyma, F., Gholaminejad, A., Omidfar, K. and Foruzandeh, M., "Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: a Review on Recent Adbances," Microchim. Acta, 186, 465(2019). https://doi.org/10.1007/s00604-019-3588-1
  13. Misak, H. E., Asmatulu, R., O'Malley, M., Jurak, E. and Mall, S., "Functionalization of Carbon Nanotube Yarn by Acid Treatment," Int. J. Smart Nano Mater., 5, 34-43(2014). https://doi.org/10.1080/19475411.2014.896426
  14. Singh, B., Bhatia, V. and Jain, V. K., "Electrostatically Functionalized Multi-walled Carbon Nanotubes Based Flexible and Non-enzymatic Biosensor for Glucose Detection," Sens. Transducers, 146, 69-77(2012).
  15. Jugovic, Gvozdenovic, M., Stevanovic, J., Trisovic, T. and Grgur, B., "Characterization of Electrochemically Synthesized PANI on Graphite Electrode for Potential Use in Electrochemical Power Sources," Mater. Chem. Phys., 114, 939-942(2009). https://doi.org/10.1016/j.matchemphys.2008.10.069
  16. Gvozdenovic, M. M., Jugovic, B. Z., Stevanovic, J. S. and Grgur, B. N., "Electrochemical Synthesis of Electroconducting Polymers," Hem. Ind., 68, 673-684(2014). https://doi.org/10.2298/HEMIND131122008G
  17. Torz-Piotrowska, R., Wrzyszczynski, A., Paprocki, K., Szreiber, M., Uniszkiewicz, C. and Staryga, E., "The Application of CVD Diamond Films in Cyclic Voltammetry," J. Achiev. Mater. Manuf. Eng., 37, 486-491(2009).
  18. Du, J., Yue, R., Yao, Z., Jiang, F., Du, Y., Yang, P. and Wang, C., "Nonenzymatic Uric Acid Electrochemical Sensor Based on Grapheme-modified Carbon Fiber Electrode," Colloids Surf. A Physicochem. Eng. Asp., 419, 94-99(2013). https://doi.org/10.1016/j.colsurfa.2012.11.060
  19. Song, M. J., "Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-doped Diamond for Detection of Glucose," Korean Chem. Eng. Res., 57, 606-610(2019). https://doi.org/10.9713/kcer.2019.57.5.606
  20. Wu, J. and Qu, Y., "Mediator-free Amperometeric Determination of Glucose Based on Direct Electron Transfer Between Glucose Oxidase and An Oxidized Boron-doped Diamond Electrode," Anal. Bioanal. Chem., 385, 1330-1335(2006). https://doi.org/10.1007/s00216-006-0534-y
  21. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N., "Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its Electrochemical Detection of Glucose," J. Electrochem. Soc., 162, H392-H396(2015).
  22. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York(1980).
  23. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao, V. K. and Vijayaraghavan, R., "Immobilization of Acetylcholineesterase-choline Oxidase on a Gold-platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents," Biosens. Bioelectron., 25, 832-838(2009). https://doi.org/10.1016/j.bios.2009.08.036
  24. Song, M. J., "Investigation on Electrochemical Property of CNT Fibers and Its Non-enzymatic Sensing Performance for Glucose Detection," Korean Chem. Eng. Res., 59, 606-610(2021).
  25. Xu, M., Song, Y., Ye, Y., Gong, C., Shen, Y., Wang, L. and Wang, L., "A Novel Flexible Electrochemical Glucose Sensor Based on Gold Nanoparticles/polyaniline Arrays/carbon Cloth Electrode," Sens. Actuators B, 252, 1187-1193(2017). https://doi.org/10.1016/j.snb.2017.07.147
  26. Zhao, A., Zhang, Z., Zhang, P., Xiao, S., Wang, L., Dong, Y., Yuan H., Li, P., Sun, Y., Jiang, X. and Xiao, F., "3D Nanoporous Gold Scaffold Supported on Grapheme Paper: Freestanding and Flexible Electrode with High Loading of Ultrafine PtCo Alloy Nanoparticles for Electrochemical Glucose Sensing," Anal. Chim. Acta, 938, 63-71(2016). https://doi.org/10.1016/j.aca.2016.08.013
  27. He, W., Sun, Y., Xi, J., Abdurhman, A. A. M., Ren, J. and Duan, H., "Printing Grapheme-carbon Nanotube-ionic Liquid Gel on Grapheme Paper: Towards Flexible Electrodes with Efficient Loading of PtAu Alloy Nanoparticles for Electrochemical Sensing of Blood Glucose," Anal. Chim. Acta, 903, 61-68(2016). https://doi.org/10.1016/j.aca.2015.11.019
  28. Thirumalai, D., Subramani, D., Shin, B., Park, H. and Chang, S. C., "A Metal-free, Non-enzymatic Electrochemical Glucose Sensor with a De-bundled Single-walled Carbon Nanotube-modified Electrode," Bull. Korean Chem. Soc., 39, 141-145(2018). https://doi.org/10.1002/bkcs.11358