과제정보
This research was supported by the National Natural Science Foundation of China (42107159, 51909260) and Fundamental Research Funds for the Central Universities (2021ZDPYJQ002).
참고문헌
- Abolfazli, M. and Fahimifarb, A. (2020), "An investigation on the correlation between the joint roughness coefficient (JRC) and joint roughness parameters", Constr. Build. Mater., 259, 120415. https://doi.org/10.1016/j.conbuildmat.2020.120415.
- An, M.K., Zhang, F.S., Elsworth, D., Xu, Z.Y., Chen, Z.W. and Zhang, L.Y. (2020), "Friction of longmaxi shale gouges and implications for seismicity during hydraulic fracturing", J. Geophys. Res. Solid Earth, 125(8), 1-20. https://doi.org/10.1029/2020JB019885.
- Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geol., 204, 41-52. https://doi.org/10.1016/j.enggeo.2016.01.018
- Ban, L.R., Du, W.S., Jin, T.W., Qi C.Z. and Li X.Z. (2021), "A roughness parameter considering joint material properties and peak shear strength model for rock joints", Int. J. Min. Sci. Technol., 31, 413-420. https://doi.org/10.1016/j.ijmst.2021.03.007.
- Barton, N. (1973), "Review of a new shear-strength criterion for rock joints", Eng. Geol., 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6.
- Barton, N., Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mechanics, 10(1-2), 1-54. https://doi.org/10.1007/BF01261801
- Cai, M., Hou, P.Y., Zhang X.W. and Feng X.T. (2021), "Post-peak Stress-Strain curves of brittle hard rocks under axial-strain-controlled loading", Int. J. Rock Mech. Min. Sci., 14, 104921. https://doi.org/10.1016/j.ijrmms.2021.104921
- Cai, M.F. (2002), "Rock mechanics rock engineering", 8, 21-21.
- Diamantis, K. (2019), "Estimation of tensile strength of ultramafic rocks using indirect approaches", Geomech. Eng., 17(3), 261-270. https://doi.org/10.12989/gae.2019.17.3.261.
- Elsworth, D., Spiers, C.J. and Niemeijer, A.R. (2016), "Understanding induced seismicity", Science, 354(6318), 1380-1381. https://doi.org/10.1126/science.aal2584
- Grasselli, G. (2006), "Manuel rocha medal recipient shear strength of rock joints based on quantified surface description", Rock Mech. Rock Eng., 39(4), 295. https://doi.org/10.1007/s00603-006-0100-0.
- Grasselli, G., Wirth, J. and Egger, P. (2002), "Quantitative three-dimensional description of a rough surface and parameter evolution with shearing", Int. J. Rock Mech. Min. Sci., 39(6), 789-800. https://doi.org/10.1016/S1365-1609(02)00070-9.
- Grasselli, G. and Egger, P., (2003), "Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters", Int. J. Rock Mech. Min. Sci., 40(1), 25-40. https://doi.org/10.1016/S1365-1609(02)00101-6.
- Guo, S.F. and Qi, S.W. (2015), "Numerical study on progressive failure of hard specimens with an unfilled undulated joint", Eng. Geol., 193, 173-182. https://doi.org/10.1016/j.enggeo.2015.04.023.
- Haberifield, C. and Johnston, I. (1994), "A mechanistically-based model for rough rock joints", Int. J. Rock Mech. Min. Sci., 39, 731-741. https://doi.org/10.1016/0148-9062(94)90898-2.
- He, L., Zhao, Z., Chen, J. and Liu, D. (2020), "Empirical shear strength criterion for rock joints based on joint surface degradation characteristics during shearing", Rock Mech. Rock Eng., 53, 3609-3624. https://doi.org/10.1007/s00603-020-02120-4.
- Hojat, N., Saeed, K.N. and Hossein, J. (2021), "Geostatistical algorithm for evaluation of primary and secondary roughness", Geomech. Eng., 24, 359-370. https://doi.org/10.12989/gae.2021.24.4.359.
- Jaeger, J.C. and Cook N. (1979), "Fundamentals of rock mechanics. Third edition", Science Paperbacks, 9(3), 251-252(2). https://doi.org/10.1111/j.1468-8123.2009.00251.x.
- Jafari, M.K., Hosseini, K.A., Pellet, F., Boulon, M. and Buzzi, O. (2003), "Evaluation of shear strength of rock joints subjected to cyclic loading", Soil Dynam. Earthq. Eng., 23(7), 619-630. https://doi.org/10.1016/S0267-7261(03)00063-0.
- Lee, H., Oh, T.M. and Park, C., (2020), "Analysis of permeability in rock fracture with effective stress at deep depth", Geomech. Eng., 22(5), 375-384. https://doi.org/10.12989/gae.2020.22.5.375.
- Mamen, B. and Hammoud, F. (2021), "Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements", Geomech. Eng., 25(4), 275-281. https://doi.org/10.12989/gae.2021.25.4.275.
- Marsch, K. and Fernandez-Steeger, T.M. (2021), "Comparative evaluation of statistical and fractal approaches for jrc calculation based on a large dataset of natural rock traces", Rock Mech. Rock Eng., 54, 1897-1917. https://doi.org/10.1007/s00603-020-02348-0
- Park J.W. and Song J.J. (2013), "Numerical method for the determination of contact areas of a rock joint under normal and shear loads", Int. J. Rock Mech. Min. Sci., 58, 8-22. https://doi.org/10.1016/j.ijrmms.2012.10.001.
- Patton, F.D. (1966), "Multiple modes of shear failure in rock", Proceeding of the Congress of International Society of Rock Mechanics, 509-513.
- Renaud, S., Tarik, S., Bouaanani, N., Miquel, B., Quirion, M. and Rivard, P. (2019), "Roughness effects on the shear strength of concrete and rock joints in dams based on experimental data", Rock Mech. Rock Eng., 52, 3867-3888. https://doi.org/10.1007/s00603-019-01803-x.
- Samanta, M., Punetha, P. and Sharma, M. (2018), "Effect of roughness on interface shear behavior of sand with steel and concrete surface", Geomech. Eng., 14(4), 387-398. https://doi.org/10.12989/gae.2018.14.4.387.
- Saadat, M. and Taheri, A. (2020) "A cohesive grain based model to simulate shear behaviour of rock joints with asperity damage in polycrystalline rock", Comput. Geotech., 117, 103254. https://doi.org/10.1016/j.compgeo.2019.103254.
- Singh, H.K. and Basu, A. (2016), "Shear behaviors of 'real' natural un-matching joints of granite with equivalent joint roughness coefficients", Eng. Geol., 211, 120-134. https://doi.org/10.1016/j.enggeo.2016.07.004.
- Wang, Z., Gu, L.L., Shen, M.R., Zhang F., Zhang G.K. and Wang X. (2019), "Shear stress relaxation behavior of rock discontinuities with different joint roughness coefficient and stress histories", J. Struct, Geol., 126, 272-285. https://doi.org/10.1016/j.jsg.2019.06.016
- Xia, C.C., Song, Y.L., Tang, Z.C. and Song Y.J. (2012), "Shear strength and morphology characteristic evolution of joint surface under cyclic loads", J. Central South Univ., 43(9), 3589-3594.
- Xie, H.P., Wang, J.A. and Stein, E. (1998), "Direct fractal measurement and multifractal properties of fracture surfaces", Phys. Lett. A, 242(1-2), 41-50. https://doi.org/10.1016/S0375-9601(98)00098-X.
- Yang, S.Q., Lu, J.W., Tian, W.L., Tang, J.Z., (2018), "Experimental study of mechanical behavior of rock specimens with different joint roughness coefficient under conventional triaxial compression", Rock Soil Mech., 39, 21-32.
- Yang, S.Q., Ranjith, P.G., Jing, H.W., Tian, W.L. and Ju, Y. (2017), "An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments". Geothermics, 65, 180-197. https://doi.org/10.1016/j.geothermics.2016.09.008.
- Yang, W.D., Wang, L., Guo J.J. and Chen, X.G. (2020), "An experimental study on shear mechanical properties of clayconcrete interface with different roughness of contact surface", Geomech. Eng., 23, 39-50. https://doi.org/10.12989/gae.2020.23.1.039.
- Zandarin, M.T., Alonso, E. and Olivella, S. (2013), "A constitutive law for rock joints considering the effects of suction and roughness on strength parameters", Int. J. Rock Mech. Min. Sci., 60(2), 333-344. https://doi.org/10.1016/j.ijrmms.2012.12.007.
- Zhao, Z.H., Dou, Z.H., Xu, H.R. and Liu, Z.N. (2019), "Shear behavior of Beishan granite fractures after thermal treatment", Eng. Fract. Mech., 213, 223-240. https://doi.org/10.1016/j.engfracmech.2019.04.012.