References
- Aboshi, H. (2004), "Long-term effect of secondary consolidation on consolidation settlement of marine clays", Proceedings of the Advances in Geotechnical Engineering: The Skempton Conference - Proceedings of a Three Day Conference on Advances in Geotechnical Engineering, Organised by the Institution of Civil Engineers, London, UK, on 29-31 March 2004.
- Alibrahim, B. and Uygar, E. (2021a), "Nonlinear calculation method for one-dimensional compression of soils", Arab. J. Sci. Eng., https://doi.org/10.1007/s13369-021-06270-7.
- Alibrahim, B. and Uygar, E. (2021b), "Influence of compaction method and effort on electrical resistivity and volume change of cohesive soils", KSCE J. Civ. Eng., 25(7), 2381-2393. https://doi.org/10.1007/s12205-021-0419-9.
- ASTM D 2435. (2011), "Standard test methods for one-dimensional consolidation properties of soils using incremental loading", The Annual Book of ASTM Standards.
- Azari, B., Fatahi, B. and Khabbaz, H. (2016), "Assessment of the elastic-viscoplastic behavior of soft soils improved with vertical drains capturing reduced shear strength of a disturbed zone", Int. J. Geomech., 16(1), B4014001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000448.
- Barden, L. (1969), "Time dependent deformation of normally consolidated clays and peats", J. Soil Mech. Found. Div., 95(1). https://trid.trb.org/view/127300.
- Bjerrum, L. (1967), "Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings", Geotechnique., 17(2), 83-118. https://doi.org/10.1680/geot.1967.17.2.83.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
- Casagrande, A. (1936), "The determination of pre-consolidation load and its practical significance", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass.
- Chen, X., Luo, Q. and Zhou, Q. (2014), "Time-dependent behaviour of interactive marine and terrestrial deposit clay", Geomech. Eng., 7(3), 279-295. https://doi.org/10.12989/GAE.2014.7.3.279.
- Crawford, C.B. (1964), "Interpretation of the consolidation test", J. Soil Mech. Found., 91(5), 146-147.
- Deng, Y.F., Cui, Y.J., Tang, A.M., Li, X.L. and Sillen, X. (2012), "An experimental study on the secondary deformation of Boom clay", Appl. Clay Sci., 59, 19-25. https://doi.org/10.1016/j.clay.2012.02.001.
- Dhowian, A.W. and Edil, T.B. (1980), "Consolidation behavior of peat", Geotech. Test. J., 3(3), 105-114. https://doi.org/10.1520/GTJ10881J.
- Fatahi, B., Le, T.M., Le, M.Q. and Khabbaz, H. (2013), "Soil creep effects on ground lateral deformation and pore water pressure under embankments", Geomech. Geoeng., 8(2), 107-124. https://doi.org/10.1080/17486025.2012.727037.
- Fox, P.J. (2003), Consolidation and Settlement Analysis, The Civil Engineering Handbook 2, (Eds., Chen, W.F. and Liew, J.Y.R.), Washington, D.C, USA.
- Fox, P.J., Roy-Chowdhury, N., Edil, T.B., Juarez-Badillo, E., Mesri, G., Stark, T.D. and Chen, C.S. (1999), "Discussions and closure: secondary compression of peat with or without surcharging", J. Geotech. Geoenviron. Eng., 125(2), 160-165. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(160).
- Fox, P.J., Edil, T.B. and Lan, L.T. (1992), "Cα/Cc concept applied to compression of peat", J. Geotech. Eng., 118(8), 1256-1263. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1256).
- Gofar, N. and Sutejo, Y. (2007), "Long term compression behavior of fibrous peat", Malaysian J. Civil Eng., 19(2), 14-26.
- Golhashem, M.R. and Uygar, E. (2019), "Improvement of internal stability of alluvial clay from Famagusta Bay, Cyprus, using copolymer of butyl acrylate and styrene", Environ. Eng. Geosci., 25(4), 289-300. https://doi.org/10.2113/EEG-2205 .
- Golhashem, M.R. and Uygar, E. (2020), "Volume change and compressive strength of an alluvial soil stabilized with butyl acrylate and styrene", Constr. Building Mater., 255, 119352. https://doi.org/10.1016/j.conbuildmat.2020.119352.
- Head, K.H. (1998), Manual of Soil Laboratory Testing: Effective Stress Tests, John Wiley & Sons Ltd, Chichester.
- Hong, Z.S., Yin, J. and Cui , Y.J. (2010), "Compression behaviour of reconstituted soils at high initial water contents", Geotechnique, 60(9), 691-700. https://doi.org/10.1680/geot.09.P.059.
- Jamiolkowski, M. (1988), "New developments in field and laboratory testing of soils", Proceedings of the 11th international conference on soil mechanics and foundation engineering, San Francisco, California, USA, August.
- Jesmani, M., Vaezi , R. and Kamalzarem, M. (2012), "Correlation between Cα/ Cc ratio and index parameters of soils", Q. J. Eng. Geol. Hydroge., 45(2), 207-220. https://doi.org/10.1144/1470-9236/09-060.
- Kabbaj, M., Tavenas, F. and Leroueil, S. (1988), "In situ and laboratory stress-strain relationships", Geotechnique, 38(1), 83-100. https://doi.org/10.1680/geot.1988.38.1.83.
- Karunawardena, A., Oka, F. and Kimoto, S. (2011), "Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay", Geomech. Eng., 3(3), 233-254. https://doi.org/10.12989/gae.2011.3.3.233.
- Ladd, C.C., Foott, R. and Ishihara, K. (1978), "Stress-deformation and strength characteristics. state-of-the-art report", Int. J. Rock Mec. Min. Sci. Geomech. Abstracts, 15(2), 421-494. https://doi.org/10.1016/0148-9062(78)91692-3.
- Le, T.M., Fatahi, B. and Khabbaz, H. (2012), "Viscous behaviour of soft clay and inducing factors", Geotech. Geological Eng., 30(5), 1069-1083. https://doi.org/10.1007/s10706-012-9535-0.
- Le, T.M., Fatahi, B. and Khabbaz, H. (2015), "Numerical optimisation to obtain elastic viscoplastic model parameters for soft clay", Int. J. Plasticity, 65, 1-21. https://doi.org/10.1016/j.ijplas.2014.08.008.
- Lei, H., Feng, S. and Jiang, Y. (2018), "Geotechnical characteristics and consolidation properties of Tianjin marine clay", Geomech. Eng., 16(2), 125-140. https://doi.org/10.12989/gae.2018.16.2.125.
- Lei, H., Wang, X., Chen, L., Huang, M. and Han, J. (2016), "Compression characteristics of ultra-soft clays subjected to simulated staged preloading", KSCE J. Civil Eng., 20(2), 718-728. https://doi.org/10.1007/s12205-015-0343-y.
- Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. (1985), "Stress-strain-strain rate relation for the compressibility of sensitive natural clays", Geotechnique, 35(2), 159-180. https://doi.org/10.1680/geot.1985.35.2.159.
- Leroueil, S., Tavenas, F. and Brucy, F .(1979), "Behavior of destructured natural clays", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 105(6), 759-778. https://doi.org/10.1016/0148-9062(79)90037-8.
- Li, Q., Ng, C.W.W. and Guo-bin, L. (2012), "Low secondary compressibility and shear strength of shanghai clay", J. Central South Univ., 19(8), 2323-2332. https://doi.org/10.1007/s11771-012-1278-9.
- Luo, Q. and Chen, X. (2014), "Experimental research on creep characteristics of Nansha soft soil", Scientific World J., 2014. https://doi.org/10.1155/2014/968738.
- Mckinley, J.D. and Sivakumar , V. (2009), "Coefficient of consolidation by plotting velocity against displacement", Geotechnique, 59(6), 553-557. https://doi.org/10.1680/geot.7.00130.
- Mesri, G., Ajlouni, M.A., Feng ,T.W. and Lo, D.O.K. (2017), "Surcharging of soft ground to reduce secondary settlement", Proceeding of the 3rd Int. Conf. on Soft Soil Engineering, Hong Kong, December 2001.
- Mesri, G., and Choi, Y.K. (1985),. "Settlement analysis of embankments on soft clays", J. Geotech. Eng., 111(4), 441-464. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441).
- Mesri, G., Rokhsar, A. and Bohor, B.F. (1975), "Composition and compressibility of typical samples of mexico city clay", Geotechnique, 25(3), 527-554. https://doi.org/10.1680/geot.1975.25.3.527.
- Miao, L. and Kavazanjian, E. (2007), "secondary compression features of Jiangsu soft marine clay", Mar. Georesour. Geotec., 25(2), 129-144. https://doi.org/10.1080/10641190701380258.
- Mitchell, J.K. (2005), Fundamentals of Soil Behavior, (3rd Ed.), New York, John Wiley & Sons, inc, Hoboken, New Jersey, Canada.
- Nash, D.F.T., Sills , G.C. and Davison, L.R. (1992), "One-dimensional consolidation testing of soft clay from bothkennar", Geotechnique, 42(2), 241-256. https://doi.org/10.1680/geot.1992.42.2.241.
- Robinson, R.G. (2003), "A Study on the beginning of secondary compression of soils", J. Test. Eval., 31(5), 388-397. https://doi.org/10.1520/JTE12362J .
- Sridharan, A. and Prakash, K.(1998), "Characteristic water contents of a fine-grained soil-water system", Geotechnique, 48(3), 337-346. https://doi.org/10.1680/geot.1998.48.3.337.
- Sridharan, A. and Rao, A. S. (1982), "Mechanisms controlling the secondary compression of clays", Geotechnique, 32(3), 249-260. https://doi.org/10.1680/geot.1982.32.3.249.
- Suneel, M., Park, L.K. and Im, J.C. (2008), "Compressibility characteristics of Korean marine clay", Mar. Georesour. Geotec., 26(2), 111-127. https://doi.org/10.1080/10641190802022478.
- Terzaghi, K. (1943), Theoretical Soil Mechanics, JohnWiley & Sons, New York.
- Walker, L.K. (1969), "Undrained creep in a sensitive clay", Geotechnique, 19(4), 515-529. https://doi.org/10.1680/geot.1969.19.4.515.
- Wu, Z.X., Jin, Y.F. and Yin, Z.Y. (2013), "Nonlinear creep behavior of normally consolidated soft clay", In Constitutive Modeling of Geomaterials (pp. 145-148). Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-32814-5_16.
- Wu, Z., Deng, Y., Cui, Y., Zhou, A., Feng, Q. and Xue, H. (2019), "Experimental study on creep behavior in oedometer tests of reconstituted soft clays", Int. J. Geomech., 19(3), 04018198. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001357.
- Yin, J.H. (2006), "Elastic visco-plastic models for the timedependent stress-strain behaviour of geomaterials", In Modern trends in geomechanics (pp. 175-190), Springer, Berlin, Heidelberg, Germany.
- Yin, J.H. (1999), "Non-Linear creep of soils in oedometer tests", Geotechnique, 49(5), 699-707. https://doi.org/10.1680/geot.1999.49.5.699.
- Yin, J.H. and Graham, J. (1989), "Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays", Can. Geotech. J., 26(2), 199-209. https://doi.org/10.1139/t89-029.
- Yin, J.H. (2015), "Fundamental issues of elastic viscoplastic modeling of the time-dependent stress-strain behavior of geomaterials", Int. J. Geomech., 15(5), A4015002. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000485.
- Yin, J.H, Zhu, J.G. and Graham, J. (2002), "A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification", Can. Geotech. J., 39(1), 157-173. https://doi.org/10.1139/t01-074.
- Yong, R.N. and Warkentin B.P. (1966), Introduction to Soil Behavior, Macmillan, New York.
- Zhu, Q.Y., Yin , Z.Y., Hicher, P.Y. and Shen, S.L. (2016), "Nonlinearity of one-dimensional creep characteristics of soft clays", Acta Geotechnica, 11(4), 887-900. https://doi.org/10.1007/s11440-015-0411-y.