DOI QR코드

DOI QR Code

Simplified analysis of creep for preloaded reconstituted soft alluvial soil from Famagusta Bay

  • Garoushi, Ali Hossien Basheer (Department of Civil Engineering, Engineering Faculty, Eastern Mediterranean University) ;
  • Uygar, Eris (Department of Civil Engineering, Engineering Faculty, Eastern Mediterranean University)
  • Received : 2020.09.08
  • Accepted : 2021.12.07
  • Published : 2022.01.25

Abstract

Preloading of soft clays is a common ground stabilization method for improvement of compressibility and the undrained shear strength. The waiting period under preload is a primary design criterion controlling the degree of improvement obtained. Upon unloading the overconsolidation attained with respect to actual loads defines the long term performance. This paper presents a laboratory study for investigation of creep behavior of Famagusta Bay alluvial soft soil preloaded under various effective stresses for analysis of long term performance based on the degree of overconsolidation. Traditional one-dimensional consolidation tests as well as modified creep tests are performed on reconstituted soft specimens. Compressibility parameters are precisely backcalculated using one dimensional consolidation theory and the coefficient of creep is determined using the traditional Cassagrande method as well as two modified methods based on log cycles of time and the inflection of the creep curve. The test results indicated that the long term creep can be successfully predicted considering the proposed method. The creep coefficients derived as part of this method can also be related to the recompression index (recompression index, swelling index) considering the results of the testing method adopted in this study.

Keywords

References

  1. Aboshi, H. (2004), "Long-term effect of secondary consolidation on consolidation settlement of marine clays", Proceedings of the Advances in Geotechnical Engineering: The Skempton Conference - Proceedings of a Three Day Conference on Advances in Geotechnical Engineering, Organised by the Institution of Civil Engineers, London, UK, on 29-31 March 2004.
  2. Alibrahim, B. and Uygar, E. (2021a), "Nonlinear calculation method for one-dimensional compression of soils", Arab. J. Sci. Eng., https://doi.org/10.1007/s13369-021-06270-7.
  3. Alibrahim, B. and Uygar, E. (2021b), "Influence of compaction method and effort on electrical resistivity and volume change of cohesive soils", KSCE J. Civ. Eng., 25(7), 2381-2393. https://doi.org/10.1007/s12205-021-0419-9.
  4. ASTM D 2435. (2011), "Standard test methods for one-dimensional consolidation properties of soils using incremental loading", The Annual Book of ASTM Standards.
  5. Azari, B., Fatahi, B. and Khabbaz, H. (2016), "Assessment of the elastic-viscoplastic behavior of soft soils improved with vertical drains capturing reduced shear strength of a disturbed zone", Int. J. Geomech., 16(1), B4014001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000448.
  6. Barden, L. (1969), "Time dependent deformation of normally consolidated clays and peats", J. Soil Mech. Found. Div., 95(1). https://trid.trb.org/view/127300.
  7. Bjerrum, L. (1967), "Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings", Geotechnique., 17(2), 83-118. https://doi.org/10.1680/geot.1967.17.2.83.
  8. Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
  9. Casagrande, A. (1936), "The determination of pre-consolidation load and its practical significance", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass.
  10. Chen, X., Luo, Q. and Zhou, Q. (2014), "Time-dependent behaviour of interactive marine and terrestrial deposit clay", Geomech. Eng., 7(3), 279-295. https://doi.org/10.12989/GAE.2014.7.3.279.
  11. Crawford, C.B. (1964), "Interpretation of the consolidation test", J. Soil Mech. Found., 91(5), 146-147.
  12. Deng, Y.F., Cui, Y.J., Tang, A.M., Li, X.L. and Sillen, X. (2012), "An experimental study on the secondary deformation of Boom clay", Appl. Clay Sci., 59, 19-25. https://doi.org/10.1016/j.clay.2012.02.001.
  13. Dhowian, A.W. and Edil, T.B. (1980), "Consolidation behavior of peat", Geotech. Test. J., 3(3), 105-114. https://doi.org/10.1520/GTJ10881J.
  14. Fatahi, B., Le, T.M., Le, M.Q. and Khabbaz, H. (2013), "Soil creep effects on ground lateral deformation and pore water pressure under embankments", Geomech. Geoeng., 8(2), 107-124. https://doi.org/10.1080/17486025.2012.727037.
  15. Fox, P.J. (2003), Consolidation and Settlement Analysis, The Civil Engineering Handbook 2, (Eds., Chen, W.F. and Liew, J.Y.R.), Washington, D.C, USA.
  16. Fox, P.J., Roy-Chowdhury, N., Edil, T.B., Juarez-Badillo, E., Mesri, G., Stark, T.D. and Chen, C.S. (1999), "Discussions and closure: secondary compression of peat with or without surcharging", J. Geotech. Geoenviron. Eng., 125(2), 160-165. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(160).
  17. Fox, P.J., Edil, T.B. and Lan, L.T. (1992), "Cα/Cc concept applied to compression of peat", J. Geotech. Eng., 118(8), 1256-1263. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1256).
  18. Gofar, N. and Sutejo, Y. (2007), "Long term compression behavior of fibrous peat", Malaysian J. Civil Eng., 19(2), 14-26.
  19. Golhashem, M.R. and Uygar, E. (2019), "Improvement of internal stability of alluvial clay from Famagusta Bay, Cyprus, using copolymer of butyl acrylate and styrene", Environ. Eng. Geosci., 25(4), 289-300. https://doi.org/10.2113/EEG-2205 .
  20. Golhashem, M.R. and Uygar, E. (2020), "Volume change and compressive strength of an alluvial soil stabilized with butyl acrylate and styrene", Constr. Building Mater., 255, 119352. https://doi.org/10.1016/j.conbuildmat.2020.119352.
  21. Head, K.H. (1998), Manual of Soil Laboratory Testing: Effective Stress Tests, John Wiley & Sons Ltd, Chichester.
  22. Hong, Z.S., Yin, J. and Cui , Y.J. (2010), "Compression behaviour of reconstituted soils at high initial water contents", Geotechnique, 60(9), 691-700. https://doi.org/10.1680/geot.09.P.059.
  23. Jamiolkowski, M. (1988), "New developments in field and laboratory testing of soils", Proceedings of the 11th international conference on soil mechanics and foundation engineering, San Francisco, California, USA, August.
  24. Jesmani, M., Vaezi , R. and Kamalzarem, M. (2012), "Correlation between Cα/ Cc ratio and index parameters of soils", Q. J. Eng. Geol. Hydroge., 45(2), 207-220. https://doi.org/10.1144/1470-9236/09-060.
  25. Kabbaj, M., Tavenas, F. and Leroueil, S. (1988), "In situ and laboratory stress-strain relationships", Geotechnique, 38(1), 83-100. https://doi.org/10.1680/geot.1988.38.1.83.
  26. Karunawardena, A., Oka, F. and Kimoto, S. (2011), "Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay", Geomech. Eng., 3(3), 233-254. https://doi.org/10.12989/gae.2011.3.3.233.
  27. Ladd, C.C., Foott, R. and Ishihara, K. (1978), "Stress-deformation and strength characteristics. state-of-the-art report", Int. J. Rock Mec. Min. Sci. Geomech. Abstracts, 15(2), 421-494. https://doi.org/10.1016/0148-9062(78)91692-3.
  28. Le, T.M., Fatahi, B. and Khabbaz, H. (2012), "Viscous behaviour of soft clay and inducing factors", Geotech. Geological Eng., 30(5), 1069-1083. https://doi.org/10.1007/s10706-012-9535-0.
  29. Le, T.M., Fatahi, B. and Khabbaz, H. (2015), "Numerical optimisation to obtain elastic viscoplastic model parameters for soft clay", Int. J. Plasticity, 65, 1-21. https://doi.org/10.1016/j.ijplas.2014.08.008.
  30. Lei, H., Feng, S. and Jiang, Y. (2018), "Geotechnical characteristics and consolidation properties of Tianjin marine clay", Geomech. Eng., 16(2), 125-140. https://doi.org/10.12989/gae.2018.16.2.125.
  31. Lei, H., Wang, X., Chen, L., Huang, M. and Han, J. (2016), "Compression characteristics of ultra-soft clays subjected to simulated staged preloading", KSCE J. Civil Eng., 20(2), 718-728. https://doi.org/10.1007/s12205-015-0343-y.
  32. Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. (1985), "Stress-strain-strain rate relation for the compressibility of sensitive natural clays", Geotechnique, 35(2), 159-180. https://doi.org/10.1680/geot.1985.35.2.159.
  33. Leroueil, S., Tavenas, F. and Brucy, F .(1979), "Behavior of destructured natural clays", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 105(6), 759-778. https://doi.org/10.1016/0148-9062(79)90037-8.
  34. Li, Q., Ng, C.W.W. and Guo-bin, L. (2012), "Low secondary compressibility and shear strength of shanghai clay", J. Central South Univ., 19(8), 2323-2332. https://doi.org/10.1007/s11771-012-1278-9.
  35. Luo, Q. and Chen, X. (2014), "Experimental research on creep characteristics of Nansha soft soil", Scientific World J., 2014. https://doi.org/10.1155/2014/968738.
  36. Mckinley, J.D. and Sivakumar , V. (2009), "Coefficient of consolidation by plotting velocity against displacement", Geotechnique, 59(6), 553-557. https://doi.org/10.1680/geot.7.00130.
  37. Mesri, G., Ajlouni, M.A., Feng ,T.W. and Lo, D.O.K. (2017), "Surcharging of soft ground to reduce secondary settlement", Proceeding of the 3rd Int. Conf. on Soft Soil Engineering, Hong Kong, December 2001.
  38. Mesri, G., and Choi, Y.K. (1985),. "Settlement analysis of embankments on soft clays", J. Geotech. Eng., 111(4), 441-464. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441).
  39. Mesri, G., Rokhsar, A. and Bohor, B.F. (1975), "Composition and compressibility of typical samples of mexico city clay", Geotechnique, 25(3), 527-554. https://doi.org/10.1680/geot.1975.25.3.527.
  40. Miao, L. and Kavazanjian, E. (2007), "secondary compression features of Jiangsu soft marine clay", Mar. Georesour. Geotec., 25(2), 129-144. https://doi.org/10.1080/10641190701380258.
  41. Mitchell, J.K. (2005), Fundamentals of Soil Behavior, (3rd Ed.), New York, John Wiley & Sons, inc, Hoboken, New Jersey, Canada.
  42. Nash, D.F.T., Sills , G.C. and Davison, L.R. (1992), "One-dimensional consolidation testing of soft clay from bothkennar", Geotechnique, 42(2), 241-256. https://doi.org/10.1680/geot.1992.42.2.241.
  43. Robinson, R.G. (2003), "A Study on the beginning of secondary compression of soils", J. Test. Eval., 31(5), 388-397. https://doi.org/10.1520/JTE12362J .
  44. Sridharan, A. and Prakash, K.(1998), "Characteristic water contents of a fine-grained soil-water system", Geotechnique, 48(3), 337-346. https://doi.org/10.1680/geot.1998.48.3.337.
  45. Sridharan, A. and Rao, A. S. (1982), "Mechanisms controlling the secondary compression of clays", Geotechnique, 32(3), 249-260. https://doi.org/10.1680/geot.1982.32.3.249.
  46. Suneel, M., Park, L.K. and Im, J.C. (2008), "Compressibility characteristics of Korean marine clay", Mar. Georesour. Geotec., 26(2), 111-127. https://doi.org/10.1080/10641190802022478.
  47. Terzaghi, K. (1943), Theoretical Soil Mechanics, JohnWiley & Sons, New York.
  48. Walker, L.K. (1969), "Undrained creep in a sensitive clay", Geotechnique, 19(4), 515-529. https://doi.org/10.1680/geot.1969.19.4.515.
  49. Wu, Z.X., Jin, Y.F. and Yin, Z.Y. (2013), "Nonlinear creep behavior of normally consolidated soft clay", In Constitutive Modeling of Geomaterials (pp. 145-148). Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-32814-5_16.
  50. Wu, Z., Deng, Y., Cui, Y., Zhou, A., Feng, Q. and Xue, H. (2019), "Experimental study on creep behavior in oedometer tests of reconstituted soft clays", Int. J. Geomech., 19(3), 04018198. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001357.
  51. Yin, J.H. (2006), "Elastic visco-plastic models for the timedependent stress-strain behaviour of geomaterials", In Modern trends in geomechanics (pp. 175-190), Springer, Berlin, Heidelberg, Germany.
  52. Yin, J.H. (1999), "Non-Linear creep of soils in oedometer tests", Geotechnique, 49(5), 699-707. https://doi.org/10.1680/geot.1999.49.5.699.
  53. Yin, J.H. and Graham, J. (1989), "Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays", Can. Geotech. J., 26(2), 199-209. https://doi.org/10.1139/t89-029.
  54. Yin, J.H. (2015), "Fundamental issues of elastic viscoplastic modeling of the time-dependent stress-strain behavior of geomaterials", Int. J. Geomech., 15(5), A4015002. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000485.
  55. Yin, J.H, Zhu, J.G. and Graham, J. (2002), "A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification", Can. Geotech. J., 39(1), 157-173. https://doi.org/10.1139/t01-074.
  56. Yong, R.N. and Warkentin B.P. (1966), Introduction to Soil Behavior, Macmillan, New York.
  57. Zhu, Q.Y., Yin , Z.Y., Hicher, P.Y. and Shen, S.L. (2016), "Nonlinearity of one-dimensional creep characteristics of soft clays", Acta Geotechnica, 11(4), 887-900. https://doi.org/10.1007/s11440-015-0411-y.