Acknowledgement
The research described in this paper was financially supported by the Fundamental Research Funds for the Central Universities (2019JBM086).
References
- Albers, B. (2014), "Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: A review", Acta Mech., 225(8), 2163-2189. https://doi.org/10.1007/s00707-014-1122-4.
- Alves, R.D., Gitirana Jr., G. and Vanapalli, S.K. (2020), "Advances in the modeling of the soil-water characteristic curve using pore-scale analysis", Comput. Geotech., 127(4), 103766. https://doi.org/10.1016/j.compgeo.2020.103766.
- Azizi, A., Jommi, C. and Musso, G. (2017). "A water retention model accounting for the hysteresis induced by hydraulic and mechanical wetting-drying cycles", Comput. Geotech., 87(1), 86-98. https://doi.org/10.1016/j.compgeo.2017.02.003.
- Camps-Roach, G., O'Carroll, D.M., Newson, T.A., Sakaki, T. and Illangasekare, T.H. (2010), "Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling", Water Resour. Res., 46(8), W08544. https://doi.org/10.1029/2009WR008881.
- Chen, H., Chen, K., Yang, M. and Xu, P. (2020a), "A fractal capillary model for multiphase flow in porous media with hysteresis effect", Int. J. Multip. Fl., 125(1), 103208. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103208.
- Chen, H., Chen, K. and Yang, M. (2020b), "A new hysteresis model of the water retention curve based on pore expansion and contraction", Comput. Geotech., 121(12), 103482. https://doi.org/10.1016/j.compgeo.2020.103482.
- Chen, R., Liu, P., Liu, X., Wang, P. and Kang, X. (2019), "Porescale model for estimating the bimodal soil-water characteristic curve and hydraulic conductivity of compacted soils with different initial densities", Eng. Geol., 260, 105199. https://doi.org/10.1016/j.enggeo.2019.105199.
- Das, D.B. and Mirzaei, M. (2013), "Experimental measurement of dynamic effect in capillary pressure relationship for two-phase flow in weakly layered porous media", Aiche J., 59(5), 1723-1734. http://doi.org/10.1002/aic.13925.
- Diamantopoulos, E. and Durner, W. (2012), "Dynamic nonequilibrium of water flow in porous media: A review", Vadose Zone J., 11(3), vzj2011.0197. http://doi.org/10.2136/vzj2011.0197.
- Eral, H.B., Mannetje, D.T. and Oh, J.M. (2013), "Contact angle hysteresis: a review of fundamentals and applications", Colloid Polym. Sci., 291(2), 247-260. http://doi.org/10.1007/s00396-012-2796-6.
- Friedman, S.P. (1999), "Dynamic contact angle explanation of flow rate-dependent saturation-pressure relationships during transient liquid flow in unsaturated porous media", J. Adhes. Sci. Technol., 13(12), 1495-1518. http://doi.org/10.1163/156856199X00613.
- Gallipoli, D., Bruno, A.W., D'Onza, F. and Mancuso, C. (2015), "A bounding surface hysteretic water retention model for deformable soils", Geotechnique, 65(10), 793-804. http://doi.org/10.1680/jgeot.14.P.118.
- Gao, Y. and Sun, D. (2017), "Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction", Comput. Geotech., 91(1), 17-26. https://doi.org/10.1016/j.compgeo.2017.06.016.
- Good, R.J. (1992), "Contact angle, wetting, and adhesion: a critical review", J. Adhes. Sci. Technol., 6(12), 1269-1302. https://doi.org/10.1163/156856192X00629.
- Hassanizadeh, S.M. and Gray, W.G. (1993), "Thermodynamic basis of capillary pressure in porous media", Water Resour. Res., 29(10), 3389-3405. http://doi.org/10.1029/93WR01495.
- Hassanizadeh, S.M., Celia, M.A. and Dahle, H.K. (2002), "Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow", Vadose Zone J., 1(1), 38-57. http://doi.org/10.2136/vzj2002.3800.
- Hu, R., Chen, Y.F., Liu, H.H. and Zhou, C.B. (2013), "A water retention curve and unsaturated hydraulic conductivity model for deformable soils: Consideration of the change in pore-size distribution", Geotechnique, 63(16), 1389-1405. https://doi.org/10.1680/geot.12.P.182
- Jaynes, D.B. (1984), "Comparison of soil-water hysteresis models", J. Hydrol., 75(1), 287-299. https://doi.org/10.1016/0022-1694(84)90054-4.
- Li, X.S. (2005), "Modelling of hysteresis response for arbitrary wetting/drying paths", Comput. Geotech., 32(2), 133-137. https://doi.org/10.1016/j.compgeo.2004.12.002.
- Likos, W.J., Lu, N. and Godt, J.W. (2014), "Hysteresis and uncertainty in soil water-retention curve parameters", J. Geotech. Geoenviron., 140(4), 04013050. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001071.
- Liu, Z., Yu, X. and Wan, L. (2013), "Influence of contact angle on soil-water characteristic curve with modified capillary rise method", Transport. Res. Rec., 2349(1), 32-40. https://doi.org/10.3141/2349-05.
- Liu, Z., Yu, X. and Wan, L. (2016), "Capillary rise method for the measurement of the contact angle of soils", Acta Geotech., 11(1), 21-35. https://doi.org/10.1007/s11440-014-0352-x.
- Milatz, M., Torzs, T., Nikooee, E., Hassanizadeh, S.M. and Grabe, J. (2018), "Theoretical and experimental investigations on the role of transient effects in the water retention behaviour of unsaturated granular soils", Geomech. Energy Envir., 15, 54-64. https://doi.org/10.1016/j.gete.2018.02.003
- Mualem, Y. (1974), "a conceptual model of hysteresis", Water Resour. Res., 10(3), 514-520. http://doi.org/10.1029/wr010i003p00514.
- Niu, G., Shao, L., Sun, D. and Guo, X. (2020), "A simplified directly determination of soil-water retention curve from pore size distribution", Geomech. Eng., 20(5), 411-420. http://doi.org/10.12989/gae.2020.20.5.411.
- O'Carroll, D.M., Phelan, T.J. and Abriola, L.M. (2005), "Exploring dynamic effects in capillary pressure in multistep outflow experiments", Water Resour. Res., 41(11), W11419. http://doi.org/10.1029/2005WR004010.
- Otalvaro, I.F., Neto, M.P.C., Delage, P. and Caicedo, B. (2016), "Relationship between soil structure and water retention properties in a residual compacted soil", Eng. Geol., 205, 73-80. https://doi.org/10.1016/j.enggeo.2016.02.016.
- Pham, H.Q., Fredlund, D.G. and Barbour, S.L. (2005), "A study of hysteresis models for soil-water characteristic curves", Can. Geotech. J., 42(6), 1548-1568. http://doi.org/10.1139/t05-071.
- Rafraf, S., Guellouz, L., Guiras, H. and Bouhlila, R. (2016), "A new model using dynamic contact angle to predict hysteretic soil water retention curve", Soil Sci. Soc. Am. J., 80(6), 1433-1442. http://doi.org/10.2136/sssaj2016.01.0006.
- Rahardjo, H., Meilani, I., Leong, E.C. and Rezaur, R.B. (2009), "Shear strength of compacted soil under infiltration condition" Geomech. Eng., 1(1), 35-52. http://doi.org/10.12989/gae.2009.1.1.035.
- Rasool, A.M. and Kuwano, J. (2020), "Ffect of constant loading on unsaturated soil under water infiltration conditions", Geomech. Eng., 20(3), 221-232. http://doi.org/10.12989/gae.2020.20.3.221.
- Sakaki, T., O'Carroll, D.M. and Illangasekare, T.H. (2010), "Direct quantification of dynamic effects in capillary pressure for drainage-wetting cycles", Vadose Zone J., 9(2), 424-437. http://doi.org/10.2136/vzj2009.0105.
- Smiles, D.E., Vachaud, G. and Vauclin, M. (1971), "A test of the uniqueness of the soil moisture characteristic during transient, nonhysteretic flow of water in a rigid soil1", Soil Sci. Soc. Am. J., 35(4), 534-539. http://doi.org/10.2136/sssaj1971.03615995003500040018x.
- Topp, G.C., Klute, A. and Peters, D.B. (1967), "Comparison of water content-pressure head data obtained by equilibrium, steady-state, and unsteady-state methods", Soil Sci. Soc. Am. J., 31(3), 312-314. http://doi.org/10.2136/sssaj1967.03615995003100030009x.
- Viaene, P., Vereecken, H., Diels, J. and Feyen, J. (1994), "A statistical analysis of six hysteresis models for the moisture retention characteristic", Soil Sci., 157(6), 345-355. http://doi.org/10.1097/00010694-199406000-00003.
- Wana-etyem, C. (1982), "Static and dynamic water content-pressure head relations of porous media", Ph.D. Dissertation, Colorado State University, Colorado.
- Wei, C.F. and Dewoolkar, M.M. (2006), "Formulation of capillary hysteresis with internal state variables", Water Resour. Res., 42 (7), W07405. http://dx.doi.org/10.1029/2005wr004594
- Wheeler, S.J., Sharma, R.S. and Buisson, M.S.R. (2003), "Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils", Geotechnique, 53(1), 41-54. http://doi.org/10.1680/geot.53.1.41.37252.
- Zhou, A. (2013), "A contact angle-dependent hysteresis model for soil-water retention behaviour", Comput. Geotech., 49, 36-42. https://doi.org/10.1016/j.compgeo.2012.10.004.
- Zhou, A.N., Sheng, D. and Carter, J.P. (2012), "Modelling the effect of initial density on soil-water characteristic curves", Geotechnique, 62(8), 669-680. https://doi.org/10.1680/geot.10.P.120.
- Zhou, C. and Ng, C.W.W. (2014), "A new and simple stress-dependent water retention model for unsaturated soil", Comput. Geotech., 62, 216-222. https://doi.org/10.1016/j.compgeo.2014.07.012.
- Zhuang, L., Hassanizadeh, S.M., Qin, C. and de Waal, A. (2017), "Experimental investigation of hysteretic dynamic capillarity effect in unsaturated flow", Water Resour. Res., 53(11), 9078-9088. http://doi.org/10.1002/2017WR020895.