DOI QR코드

DOI QR Code

Cement/PVDF hollow-fiber hybrid basement membrane: Preparation, microstructure, and separation application

  • Yabin, Zhang (State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University) ;
  • Xiongfei, Du (State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University) ;
  • Taotao, Zhao (State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University)
  • Received : 2022.03.20
  • Accepted : 2022.11.10
  • Published : 2022.11.25

Abstract

In this study, cement/PVDF hollow-fiber hybrid membranes were prepared via a mixed process of diffusion-induced phase separation and hydration. The presence of X-ray diffraction peaks of Ca(OH)2, an AFt phase, an AFm phase, and C-S-H phase confirmed the hydration reaction. Good hydrophilicity was obtained. The cross-sectional and surface morphologies of the hybrid membranes showed that an asymmetric pore structure was formed. Hydration products comprising parallel plates of Ca(OH)2, fibrous ettringite AFt, and granulated particles AFm were obtained gradually. For the hybrid membranes cured for different time, the pore-size distribution was similar but the porosity decreased because of blocking of the hydration products. In addition, the water flux decreased with hydration time, and carbon retention was 90% after 5 h of rejection treatment. Almost all the Zn2+ ions were adsorbed by the hybrid membrane. The above results proved that the obtained membrane could be alternative as basement membrane for separation application.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China [grant number 51402212].

References

  1. Abdullah, N., Rahman, M.A., Othman, M.H.D., Jaafar, J. and Aziz, A.A. (2018), "Preparation, characterizations and performance evaluations of alumina hollow fiber membrane incorporated with UiO-66 particles for humic acid removal", J. Membr. Sci., 563, 162-174. https://doi.org/10.1016/j.memsci.2018.05.059.
  2. Abdullayev, A., Kamm, P.H., Bekheet, M.F. and Gurlo, A. (2020), "Fabrication and characterization of ice templated membrane supports from Portland cement", Membranes, 10(5), 93-105. https://doi.org/10.3390/membranes10050093.
  3. Ang, E.Y.M., Toh, W., Yeo, J.J., Lin, R.M., Liu, Z.S., Geethalakshmi, K.R. and Ng, T.Y. (2020), "A review on low dimensional carbon desalination and gas separation membrane designs", J. Membr. Sci., 598, 117785. https://doi.org/10.1016/j.memsci.2019.117785.
  4. Aitcin, P.C. and Flatt, R. (2015), Science and Technology of Concrete Admixtures, Woodhead Publishing, Cambridge, CAM, U.K.
  5. Bindes, M.M.M., Terra, N.M., Patience, G.S., Boffitoorcid, D.C., Cardoso, V.L. and Reis, M.H.M. (2020), "Asymmetric Al2O3 and PES/Al2O3 hollow fiber membranes for green tea extract clarification", J. Food Eng., 277, 109889. https://doi.org/10.1016/j.jfoodeng.2019.109889.
  6. Bukhari, S.Z.A., Ha, J.H., Lee, J. and Song, I.H. (2018), "Oxidation-bonded SiC membrane for microfiltration", J. Eur. Ceram. Soc., 38(4), 1711-1719. https://doi.org/10.1016/j.jeurceramsoc.2017.10.019.
  7. Buonomenna, M.G., and Golemme, G. (2012), Advanced Materials for Membrane Preparation, Bentham Science Publishers, Sharjah, SHJ, UAE.
  8. Chang, Q.B., Zhou, J.E., Wang, Y.Q., Wang, J.M. and Meng, G.Y. (2010), "Hydrophilic modification of Al2O3 microfiltration membrane with nano-sized γ-Al2O3 coating", Desalination, 262(1-3), 110-114. https://doi.org/10.1016/j.desal.2010.05.055.
  9. Chen, T.J., Wang, Z.G., Hu, J.W., Wai, M.H., Kawi, S. and Lin, Y.S. (2020), "High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature", J. Membr. Sci., 597, 117770. https://doi.org/10.1016/j.memsci.2019.117770.
  10. Das, D., Kayal, N., Innocentini, M.D.M. and Filho, D.G.P. (2021), "Effect of processing parameters on mullite bonded SiC membrane for turbid water filtration", Membr. Water Treat., 12(3), 133-138. https://doi.org/10.12989/mwt.2021.12.3.133.
  11. Drioli, E. and Giorno, L. (2010), Basic Aspects of Membrane Science and Engineering, Elsevier Inc, Amsterdam, AMS, NLD.
  12. Fu, W.G., Zhang, X., Mao, Y.Y., Pei, T.F., Sun, B.S., Mei, S.Z. and Chen, L. (2018), "A novel γ-Al2O3 nanofiltration membrane via introducing hollow microspheres into interlayers for improving water permeability", Ceram. Int., 44(13), 15824-15832. https://doi.org/10.1016/j.ceramint.2018.05.261.
  13. Govindan, M., Gopal, R.A., Zhu, B., Duke, M., Gray, S. and Moon, I.S. (2019), "Prototype membrane electrolysis using a MFI-zeolite-coated ceramic tubular membrane provides in-line generation of two active electron mediators by eliminating active species crossover", J. Membr. Sci., 579, 302-308. https://doi.org/10.1016/j.memsci.2019.02.069.
  14. Ge, Y.Y., Yuan, Y., Wang, K.T., He, Y. and Cui, X.M. (2015), "Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater", J. Hazard Mater., 299, 711-718. https://doi.org/10.1016/j.jhazmat.2015.08.006.
  15. He, H.T., Jing, W.H., Xing, W.H. and Fan, Y.Q. (2011), "Improving protein resistance of α-Al2O3 membranes by modification with POEGMA brushes", Appl. Surf. Sci., 258(3), 1038-1044. https://doi.org/10.1016/j.apsusc.2011.08.121.
  16. Hewlett, P.C. and Liska, M. (2017), Lea's Chemistry of Cement and Concrete, Butterworth-Heinmann, Massachusetts, MA, U.S.A.
  17. Kashaninia, F., Rezaie, H.R. and Sarpoolaky, H. (2019), "Clay adsorptive membranes for chromium removal from water", Membr. Water Treat., 10(4), 259-264. https://doi.org/10.12989/mwt.2019.10.4.259.
  18. Kawai, K., Hayashi, A., Kikuchi H. and Yokoyama, S. (2014), "Desorption properties of heavy metals from cement hydrates in various chloride solutions", Constr. Bulid. Mater., 67(Part A), 55-60. https://doi.org/10.1016/j.conbuildmat.2013.11.029.
  19. Kubo, M., Kojima, M., Mano, R., Daiko, Y., Honda, S. and Iwamoto, Y. (2020), "A hydrostable mesoporous γ-Al2O3 membrane modified with Si-C-H organic-inorganic hybrid derived from polycarbosilane", J. Membr. Sci., 598, 117799. https://doi.org/10.1016/j.memsci.2019.117799.
  20. Lee, H.J., Park, Y.G., Kim, M.K., Lee, S.H. and Park, J.H. (2019), "Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design", Sep. Purif. Technol., 220, 189-196. https://doi.org/10.1016/j.seppur.2019.03.011.
  21. Li, D.M., Liang, J.L., Huang, M.Z., Huang, J., Feng, L., Li S.X. and Zhan, Y.S. (2019), "Surface properties and interception behaviors of GO-TiO2 modified PVDF hollow fiber membrane", Membr. Water Treat., 10(2), 113-120. https://doi.org/10.12989/mwt.2019.10.2.113.
  22. Li, S., Wei, C.C., Zhou, L.J., Wang, P., Meng, Q.M. and Xie, Z.P. (2019), "Sol-gel derived zirconia membrane on silicon carbide substrate", J. Eur. Ceram. Soc., 39(13), 3804-3811. https://doi.org/10.1016/j.jeurceramsoc.2019.04.054.
  23. Li, X.P., Shan, H.T., Zhang, W. and Li, B.A. (2020), "3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation", Sep. Purif. Technol., 37, 116324. https://doi.org/10.1016/j.seppur.2019.116324.
  24. Liu, H.X., Wang, N.X., Zhao, C., Ji, S.L. and Li, J.R. (2018), "Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures-a review", Chin. J. Chem. Eng., 26(1), 1-16. https://doi.org/10.1016/j.cjche.2017.03.006.
  25. Liu, H., Liu, J.Y., Hong, Z., Wang, S.X., Gao, X.C. and Gu, X.H. (2021), "Preparation of hollow fiber membranes from mullite particles with aid of sintering additives", J. Adv. Ceram., 10(1), 78-87. https://doi.org/10.1007/s40145-020-0420-7.
  26. Liu, J.X., Ju, X.H., Tang, C.H., Liu, L., Li, H. and Chen, P. (2020), "High performance stainless-steel supported Pd membranes with finger-like and gap structure and its application in NH3 decomposition membrane reactor", Chem. Eng. J., 388, 124245. https://doi.org/10.1016/j.cej.2020.124245.
  27. Ortega-lugo, R., Fabian-anguiano, J.A., Ovalle-encinia, O., Gomez-yanez, C., Zeifert, B.H. and Ortiz-landeros, J. (2020), "Mixed-conducting ceramic-carbonate membranes exhibiting high CO2/O2 permeation flux and stability at high temperatures", J. Adv. Ceram., 9(1), 94-106. https://doi.org/10.1007/s40145-019-0352-2.
  28. Qin, W., Guan, K., Lei, B.L., Liu, Y., Peng, C. and Wu, J.Q. (2015), "One-step coating and characterization of α-Al2O3 microfiltration membrane", J. Membrane Sci., 490, 160-168. https://doi.org/10.1016/j.memsci.2015.05.003.
  29. Shafie, A.H., An, W.Z., Hejazi, S.A.H., Sawada, J.A. and Kuznicki, S.M. (2012), "Natural zeolite-based cement composite membranes for H2/CO2 separation", Sep. Purif. Technol., 88, 24-28. https://doi.org/10.1016/j.seppur.2011.11.020.
  30. Siyal, M.I., Khan, A.A., Lee, C.K. and Kim, J.O. (2018), "Surface modification of glass fiber membranes by fluorographite coating for desalination of concentrated saline water with humic acid in direct-contact membrane distillation", Sep. Purif. Technol., 205, 284-292. https://doi.org/10.1016/j.seppur.2018.05.045.
  31. Wang, C.F., Zhang, Y.B., Tan, H.B. and Du, X.F. (2021), Non-calcined ZrO2 sol-coated hollow glass fibre membrane: Preparation, microstructure, and dye separation", Ceram. Int., 47(9), 12906-12915. https://doi.org/10.1016/j.ceramint.2021.01.153
  32. Wang, L., Dong, B.B., Min, Z.Y., Guan, L., Zheng, X.C., Wang, Q.F., Yin, C.F., Zhang, R., Wang, F.H., Abadikhah, H., Xu, X., Wang, G., Yuan, B. and Yang, D.Y. (2022), "Novel fabrication processing of porous Al2O3/CaAl12O19 membrane by combining emulsion, cement curing and tape-casting methods", Membranes, 12(8), 747-752. https://doi.org/10.3390/membranes12080747.
  33. Xu, M.X., He, Y., Liu, Z.H., Tong, Z.F. and Cui, X.M. (2019), "Preparation of geopolymer inorganic membrane and purification of pulpapermaking green liquor", Appl. Clay Sci., 168, 269-275. https://doi.org/10.1016/j.clay.2018.11.024.
  34. Zhang, W.Q., Gaggl, M., Gluth, G.J.G. and Behrendt, F. (2014), "Gas separation using porous cement membrane", J. Environ. Sci., 26(1), 140-146. https://doi.org/10.1016/S1001-0742(13)60389-7.
  35. Zhang, Y.B., Cao, X., Fan, W.B., Wang, S.D. and Xiao, C.F. (2014), "Preparation of porous glass-based thick film using diffusion-induced phase separation from scrap glass", J. Am. Ceram. Soc., 97(10), 3128-3134. https://doi.org/10.1111/jace.13104.
  36. Zhang, Y.B., Liu, J.J., Du, X.F. and Shao, W. (2019), "Preparation of reusable glass hollow fiber membranes and methylene blue adsorption", J. Eur. Ceram. Soc., 39(15), 4891-4900. https://doi.org/10.1016/j.jeurceramsoc.2019.06.038.
  37. Zhang, Y.B., Tan, H.B., Wang, C.F., Li, B.W., Yang, H., Hou, H.T. and Xiao, C.F. (2022), "TiO2-coated glass hollow fiber membranes: Preparation and application for photocatalytic methylene blue removal", J. Eur. Ceram. Soc., 42(5), 2496-2504. https://doi.org/10.1016/j.jeurceramsoc.2021.12.075.