Acknowledgement
Dr. Wang would like to express thanks to the support from the Natural Science Project of Changzhou College of Information Technology with the project number CXZK202104Y.
References
- Atkas, O. and Aluru, N.R. (2002), "A combined continuum/DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178, 342-372. https://doi.org/10.1006/jcph.2002.7030
- Azamat, J. (2021), "Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment", Membr. Water Treat., 12, 227-243. https://doi.org/10.12989/mwt.2021.12.5.227
- Borg, M.K. and Reese, J.M. (2017), "Multiscale simulation of enhanced water flow in nanotubes", MRS Bullet., 42, 294-299. https://doi.org/10.1557/mrs.2017.59.
- Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modelling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26, 991-994. https://doi.org/10.1016/j.aml.2013.05.004
- Das, D., Kayal, N., and Innocentini, M.D.M. (2021), "Effect of processing parameters on mullite bonded SiC membrane for turbid water filtration", Membr. Water Treat., 12(3), 133-138. https://doi.org/10.12989/mwt.2021.12.3.133
- Dai, H., Xu, Z., and Yang, X. (2016), "Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: A molecular dynamics simulation", J. Phys. Chem., 120, 22585-22596. https://doi.org/10.1021/acs.jpcc.6b05337
- Gruener, S., Wallacher, D., Greulich, S., Busch, M. and Huber, P. (2016), "Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane", Phys. Rev., 93, 013h102. https://doi.org/10.1103/PhysRevE.93.013102
- Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037. https://doi.org/10.1126/science.1126298
- Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J.J., Shao, C., Shiomi, J., Tabata, K.V., Noji, H., Sato, K., and Aida, T. (2022), "Ultrafast water permeation through nanochannels with a densely fluorous interior surface", Science, 376, 738-743. https://doi.org/10.1126/science.abd0966
- Jiang, C.T. and Zhang, Y.B. (2022), "Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows", Sci. Rep., 12, 396. https://doi.org/10.1038/s41598-021-04391-5
- Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138, 094701. http://doi.org/10.1063/1.4793396
- Kasiteropoulou, D., Karakasidis, T.E. and Liakopoulos, A. (2012), "A dissipative particle dynamics study of flow in periodically grooved nanochannels", Int. J. Num. Meth. Fluids, 68, 1156-1172. https://doi.org/10.1002/fld.2599
- Kasiteropoulou, D., Karakasidis, T.E. and Liakopoulos, A. (2016), "Study of fluid flow in grooved micro and nano-channels via dissipative particle dynamic: a tool for desalination membrane design", Desal. Water Treat., 57, 11675-11684. https://doi.org/10.1080/19443994.2016.1141118
- Li, J. and Zhang, Y.B. (2021), "Flow equations and their borderlines for different regimes of mass transfer", Front. Heat Mass Transf., 16, 21. http://doi.org/10.5098/hmt.16.21
- Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a
- Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13, 125-130. https://doi.org/10.1007/s10404-012-0949-z
- Meyer, E., Overney, R.M., Dransfeld, K., Gyalog, T. (1998), Friction and Rheology on the Nanometer Scale. World Scientific Press, New Jersey, U.S.A.
- Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes?" Microfluid. Nanofluid., 10, 1141-1145. https://doi.org/10.1007/s10404-010-0752-7
- Perdikaris, P., Grinberg, L. and Karniadakis, G.E. (2016), "Multiscale modeling and simulation of brain blood flow", Phys. Fluids, 28, 021304. https://doi.org/10.1063/1.4941315
- Qin, X.C., Yuan, Q., Zhao, Y., Xie, S. and Liu, Z. (2011), "Measurement of the rate of water translocation through carbon nanotubes", Nano Lett., 11, 2173-2177. https://doi.org/10.1021/nl200843g
- Radha1, A. Esfandiar1, F., Wang, A.P., Rooney, K., Gopinadhan, A., Keerthi, A., Mishchenko, A., Janardanan, P., Fumagalli, M., Lozada-Hidalgo, S., Garaj, S.J., Haigh, I.V., Grigorieva, H.A., and Wu, A.K. (2016), "Molecular transport through capillaries made with atomic-scale precision", Nature, 538, 222-225. https://doi.org/10.1038/nature19363
- Ray, S.S., Chando, P. and Yarin, A.L. (2009), "Enhanced release of liquid from carbon nanotubes due to entrainment by an air layer", Nanotechnology, 20, 095711. https://doi.org/10.1088/0957-4484/20/9/095711
- Ritos, K., Mattia, D., Calabro, F. and Reese, J. M. (2014), "Flow enhancement in nanotubes of different materials and lengths", J. Chem. Phys., 140, 014702. https://doi.org/10.1063/1.4846300
- Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A. and Bocquet, L. (2016), "Massive radius-dependent flow slippage in carbon nanotubes", Nature, 537, 210-213. https://doi.org/10.1038/nature19315
- Thomas, J.A. and McGaughey, A.J.H. (2008), "Density, distribution, and orientation of water molecules inside and outside carbon nanotubes", J. Chem. Phys., 128, 084715. https://doi.org/10.1063/1.2837297
- Thomas, J.A. and McGaughey, A.J.H. (2009), "Water flow in carbon nanotubes: Transition to subcontinuum transport", Phys. Rev. Lett., 102, 184502. https://doi.org/10.1103/PhysRevLett.102.184502
- Thomas, J.A., McGaughey, A.J.H. and Kuter-Arnebeck, O. (2010), "Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation", Int. J. Therm. Sci., 49, 281-289. https://doi.org/10.1016/j.ijthermalsci.2009.07.008
- Walther, J.H., Ritos, K., Cruz-Chu, E.R., Megaridis, C.M. and Koumoutsakos, P. (2013), "Barriers to superfast water transport in carbon nanotube membranes", Nano Lett., 13, 1910-1914. https://doi.org/10.1021/nl304000k
- Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotechnology, 2, 87-94. https://doi.org/10.1038/nnano.2006.175
- Whitby, M.C., Cagno, L., Thanou, M. and Quirke, N. (2008), "Enhanced fluid flow through nanoscale carbon pipes", Nano Lett., 8, 2632-2637. https://doi.org/10.1021/nl080705f
- Yen, T.H., Soong, C.Y. and Tzeng, P.Y. (2007), "Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows", Microfluid. Nanofluid., 3, 665-675. https://doi.org/10.1007/s10404-007-0154-7
- Zhang, Y.B. (2004), "Modeling of molecularly thin film elastohydrodynamic lubrication", J. Balkan Trib. Assoc., 10, 394-421.
- Zhang, Y.B. (2013a), "The Reynolds equation for boundary film considering the non-continuum effect and its application to the one-dimensional micro step bearing: Part I-Calculation for no boundary slippage", J. Comput. Theor. Nanosci., 10, 603-608. https://doi.org/10.1166/jctn.2013.2742
- Zhang, Y.B. (2013b), "The Reynolds equation for boundary film considering the non-continuum effect and its application to the one-dimensional micro step bearing: Part II-Calculation for boundary slippage", J. Comput. Theor. Nanosci., 10, 609-615. https://doi.org/10.1166/jctn.2013.2742
- Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20, 522-538.
- Zhang, Y.B. (2015a), "The flow factor approach model for the fluid flow in a nano channel", Int. J. Heat Mass Trans., 89, 733-742. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.092
- Zhang, Y.B. (2015b), "A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film", Theor. Comput. Fluid Dyn., 29, 193-204. https://doi.org/10.1007/s00162-015-0348-7
- Zhang, Y.B. (2016a), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008
- Zhang, Y. B. (2016b), "Calculating the maximum flowing velocity of the Poiseuille flow in a nano channel by the flow factor approach model", Int. Commun. Heat Mass Transf., 73, 111-113. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.014
- Zhang, Y.B. (2016c), "An additional validation of the flow factor approach model", Int. J. Heat Mass Transf., 95, 953-955. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.016
- Zhang, Y.B. (2017), "Transport in nanotube tree", Int. J. Heat Mass Transf., 114, 536-540. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.105
- Zhang, Y.B. (2018), "Size effect on nanochannel flow explored by the flow factor approach model", Int. J Heat Mass Transf., 125, 681-685. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.064
- Zhang, Y.B. (2019), "Density and viscosity profiles governing nanochannel flow", Phys. A: Stat. Mech. Its Appl., 521, 1-8. https://doi.org/10.1016/j.physa.2019.01.079
- Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069