DOI QR코드

DOI QR Code

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang (School of Electronic Engineering, Changzhou College of Information Technology) ;
  • Yongbin, Zhang (College of Mechanical Engineering, Changzhou University)
  • Received : 2022.08.04
  • Accepted : 2022.11.14
  • Published : 2022.11.25

Abstract

Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.

Keywords

Acknowledgement

Dr. Wang would like to express thanks to the support from the Natural Science Project of Changzhou College of Information Technology with the project number CXZK202104Y.

References

  1. Atkas, O. and Aluru, N.R. (2002), "A combined continuum/DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178, 342-372. https://doi.org/10.1006/jcph.2002.7030
  2. Azamat, J. (2021), "Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment", Membr. Water Treat., 12, 227-243. https://doi.org/10.12989/mwt.2021.12.5.227
  3. Borg, M.K. and Reese, J.M. (2017), "Multiscale simulation of enhanced water flow in nanotubes", MRS Bullet., 42, 294-299. https://doi.org/10.1557/mrs.2017.59.
  4. Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modelling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26, 991-994. https://doi.org/10.1016/j.aml.2013.05.004
  5. Das, D., Kayal, N., and Innocentini, M.D.M. (2021), "Effect of processing parameters on mullite bonded SiC membrane for turbid water filtration", Membr. Water Treat., 12(3), 133-138. https://doi.org/10.12989/mwt.2021.12.3.133
  6. Dai, H., Xu, Z., and Yang, X. (2016), "Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: A molecular dynamics simulation", J. Phys. Chem., 120, 22585-22596. https://doi.org/10.1021/acs.jpcc.6b05337
  7. Gruener, S., Wallacher, D., Greulich, S., Busch, M. and Huber, P. (2016), "Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane", Phys. Rev., 93, 013h102. https://doi.org/10.1103/PhysRevE.93.013102
  8. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037. https://doi.org/10.1126/science.1126298
  9. Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J.J., Shao, C., Shiomi, J., Tabata, K.V., Noji, H., Sato, K., and Aida, T. (2022), "Ultrafast water permeation through nanochannels with a densely fluorous interior surface", Science, 376, 738-743. https://doi.org/10.1126/science.abd0966
  10. Jiang, C.T. and Zhang, Y.B. (2022), "Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows", Sci. Rep., 12, 396. https://doi.org/10.1038/s41598-021-04391-5
  11. Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138, 094701. http://doi.org/10.1063/1.4793396
  12. Kasiteropoulou, D., Karakasidis, T.E. and Liakopoulos, A. (2012), "A dissipative particle dynamics study of flow in periodically grooved nanochannels", Int. J. Num. Meth. Fluids, 68, 1156-1172. https://doi.org/10.1002/fld.2599
  13. Kasiteropoulou, D., Karakasidis, T.E. and Liakopoulos, A. (2016), "Study of fluid flow in grooved micro and nano-channels via dissipative particle dynamic: a tool for desalination membrane design", Desal. Water Treat., 57, 11675-11684. https://doi.org/10.1080/19443994.2016.1141118
  14. Li, J. and Zhang, Y.B. (2021), "Flow equations and their borderlines for different regimes of mass transfer", Front. Heat Mass Transf., 16, 21. http://doi.org/10.5098/hmt.16.21
  15. Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a
  16. Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13, 125-130. https://doi.org/10.1007/s10404-012-0949-z
  17. Meyer, E., Overney, R.M., Dransfeld, K., Gyalog, T. (1998), Friction and Rheology on the Nanometer Scale. World Scientific Press, New Jersey, U.S.A.
  18. Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes?" Microfluid. Nanofluid., 10, 1141-1145. https://doi.org/10.1007/s10404-010-0752-7
  19. Perdikaris, P., Grinberg, L. and Karniadakis, G.E. (2016), "Multiscale modeling and simulation of brain blood flow", Phys. Fluids, 28, 021304. https://doi.org/10.1063/1.4941315
  20. Qin, X.C., Yuan, Q., Zhao, Y., Xie, S. and Liu, Z. (2011), "Measurement of the rate of water translocation through carbon nanotubes", Nano Lett., 11, 2173-2177. https://doi.org/10.1021/nl200843g
  21. Radha1, A. Esfandiar1, F., Wang, A.P., Rooney, K., Gopinadhan, A., Keerthi, A., Mishchenko, A., Janardanan, P., Fumagalli, M., Lozada-Hidalgo, S., Garaj, S.J., Haigh, I.V., Grigorieva, H.A., and Wu, A.K. (2016), "Molecular transport through capillaries made with atomic-scale precision", Nature, 538, 222-225. https://doi.org/10.1038/nature19363
  22. Ray, S.S., Chando, P. and Yarin, A.L. (2009), "Enhanced release of liquid from carbon nanotubes due to entrainment by an air layer", Nanotechnology, 20, 095711. https://doi.org/10.1088/0957-4484/20/9/095711
  23. Ritos, K., Mattia, D., Calabro, F. and Reese, J. M. (2014), "Flow enhancement in nanotubes of different materials and lengths", J. Chem. Phys., 140, 014702. https://doi.org/10.1063/1.4846300
  24. Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A. and Bocquet, L. (2016), "Massive radius-dependent flow slippage in carbon nanotubes", Nature, 537, 210-213. https://doi.org/10.1038/nature19315
  25. Thomas, J.A. and McGaughey, A.J.H. (2008), "Density, distribution, and orientation of water molecules inside and outside carbon nanotubes", J. Chem. Phys., 128, 084715. https://doi.org/10.1063/1.2837297
  26. Thomas, J.A. and McGaughey, A.J.H. (2009), "Water flow in carbon nanotubes: Transition to subcontinuum transport", Phys. Rev. Lett., 102, 184502. https://doi.org/10.1103/PhysRevLett.102.184502
  27. Thomas, J.A., McGaughey, A.J.H. and Kuter-Arnebeck, O. (2010), "Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation", Int. J. Therm. Sci., 49, 281-289. https://doi.org/10.1016/j.ijthermalsci.2009.07.008
  28. Walther, J.H., Ritos, K., Cruz-Chu, E.R., Megaridis, C.M. and Koumoutsakos, P. (2013), "Barriers to superfast water transport in carbon nanotube membranes", Nano Lett., 13, 1910-1914. https://doi.org/10.1021/nl304000k
  29. Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotechnology, 2, 87-94. https://doi.org/10.1038/nnano.2006.175
  30. Whitby, M.C., Cagno, L., Thanou, M. and Quirke, N. (2008), "Enhanced fluid flow through nanoscale carbon pipes", Nano Lett., 8, 2632-2637. https://doi.org/10.1021/nl080705f
  31. Yen, T.H., Soong, C.Y. and Tzeng, P.Y. (2007), "Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows", Microfluid. Nanofluid., 3, 665-675. https://doi.org/10.1007/s10404-007-0154-7
  32. Zhang, Y.B. (2004), "Modeling of molecularly thin film elastohydrodynamic lubrication", J. Balkan Trib. Assoc., 10, 394-421.
  33. Zhang, Y.B. (2013a), "The Reynolds equation for boundary film considering the non-continuum effect and its application to the one-dimensional micro step bearing: Part I-Calculation for no boundary slippage", J. Comput. Theor. Nanosci., 10, 603-608. https://doi.org/10.1166/jctn.2013.2742
  34. Zhang, Y.B. (2013b), "The Reynolds equation for boundary film considering the non-continuum effect and its application to the one-dimensional micro step bearing: Part II-Calculation for boundary slippage", J. Comput. Theor. Nanosci., 10, 609-615. https://doi.org/10.1166/jctn.2013.2742
  35. Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20, 522-538.
  36. Zhang, Y.B. (2015a), "The flow factor approach model for the fluid flow in a nano channel", Int. J. Heat Mass Trans., 89, 733-742. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.092
  37. Zhang, Y.B. (2015b), "A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film", Theor. Comput. Fluid Dyn., 29, 193-204. https://doi.org/10.1007/s00162-015-0348-7
  38. Zhang, Y.B. (2016a), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008
  39. Zhang, Y. B. (2016b), "Calculating the maximum flowing velocity of the Poiseuille flow in a nano channel by the flow factor approach model", Int. Commun. Heat Mass Transf., 73, 111-113. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.014
  40. Zhang, Y.B. (2016c), "An additional validation of the flow factor approach model", Int. J. Heat Mass Transf., 95, 953-955. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.016
  41. Zhang, Y.B. (2017), "Transport in nanotube tree", Int. J. Heat Mass Transf., 114, 536-540. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.105
  42. Zhang, Y.B. (2018), "Size effect on nanochannel flow explored by the flow factor approach model", Int. J Heat Mass Transf., 125, 681-685. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.064
  43. Zhang, Y.B. (2019), "Density and viscosity profiles governing nanochannel flow", Phys. A: Stat. Mech. Its Appl., 521, 1-8. https://doi.org/10.1016/j.physa.2019.01.079
  44. Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069