DOI QR코드

DOI QR Code

Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam

  • 투고 : 2020.06.10
  • 심사 : 2021.10.22
  • 발행 : 2022.01.10

초록

The present paper deals with the application of one dimensional piezoelectric materials in particular piezo-thermoelastic nanobeam. The generalized piezo-thermo-elastic theory with two temperature and Euler Bernoulli theory with small scale effects using nonlocal Eringen's theory have been used to form the mathematical model. The ends of nanobeam are considered to be simply supported and at a constant temperature. The mathematical model so formed is solved to obtain the non-dimensional expressions for lateral deflection, electric potential, thermal moment, thermoelastic damping and frequency shift. Effect of frequency and nonlocal parameter on the lateral deflection, electric potential, thermal moment with generalized piezothermoelastic theory are represented graphically using the MATLAB software. Comparisons are made with the different theories of thermoelasticity.

키워드

참고문헌

  1. Abd-Alla, A.E.N.N. and Abbas, I. (2011), "A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder", J. Therm. Stress., 25(11), 1009-1025. https://doi.org/10.1080/01495730290074612.
  2. Aldawody, D.A., Hendy, M.H. and Ezzat, M.A. (2018), "On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative", Microsyst. Technol., 25(8), 2915-2929. https://doi.org/10.1007/s00542-018-4194-6.
  3. Bhatti, M.M. and Lu, D.Q. (2019), "Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current", Symmetry, 11(3), 1-29. https://doi.org/10.3390/sym11030333.
  4. Bhatti, M.M., Elelamy, A.F., Sait, S.M. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532-547. https://doi.org/10.3390/sym12040532.
  5. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019a), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 35(35), 1950439. https://doi.org/10.1142/S0217984919504396.
  6. Bhatti, M.M., Yousif, M.A., Mishra, S.R. and Shahid, A. (2019b), "Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface", Pramana, 93(6), 88. https://doi.org/10.1007/s12043-019-1850-z.
  7. Borjalilou, V., Asghari, M. and Taati, E. (2020), "Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect", J. Vib. Control, 26(11-12), 1042-1053. https://doi.org/10.1177/1077546319891334.
  8. Eom, C.B. and Trolier-McKinstry, S. (2012), "Thin-film piezoelectric MEMS", Mater. Res. Soc. Bull., 37(11), 1007-1017. https://doi.org/10.1557/mrs.2012.273.
  9. Eringen, A.C. (1966a), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923.
  10. Eringen, A.C. (1966b), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4(2), 179-202. https://doi.org/10.1016/0020-7225(66)90022-X.
  11. Eringen, A.C. (1966c), "Theory of micropolar fluids", J. Math. Mech., 16(1), 1-18. https://doi.org/10.1512/iumj.1967.16.16001.
  12. Ezzat, M.A., Karamany, A.S. and El-Bary, A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539.
  13. Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135, 1-20. https://doi.org/10.1140/epjp/s13360-019-00037-8.
  14. Kaur, I. and Singh, K. (2021a), "Thermoelastic damping in a thin circular transversely isotropic Kirchhoff-Love plate due to GN theory of type III", Arch. Appl. Mech., 91(5), 2143-2157. https://doi.org/10.1007/s00419-020-01874-1.
  15. Kaur, I. and Singh, K. (2021b), "Effect of memory dependent derivative and variable thermal conductivity in cantilever nano-Beam with forced transverse vibrations", Force. Mech., 5, 100043. https://doi.org/10.1016/j.finmec.2021.100043.
  16. Kaur, I., Lata, P. and Singh, K. (2020a), "Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature", Wave. Rand. Complex Media, 1-34. https://doi.org/10.1080/17455030.2020.1856451.
  17. Kaur, I., Lata, P. and Singh, K. (2020b), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer", Adv. Mater. Res., 9(4), 289-309. https://doi.org/10.12989/amr.2020.9.4.289.
  18. Kaur, I., Singh, K. and Ghita, G.M. (2021), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", ZAMM-J. Appl. Math. Mech., 101(10), 1-13. https://doi.org/10.1002/zamm.202100108.
  19. Lazar, M. and Agiasofitou, E. (2011), "Screw dislocation in nonlocal anisotropic elasticity", Int. J. Eng. Sci., 49(12), 1404-1414. https://doi.org/10.1016/j.ijengsci.2011.02.011.
  20. Lesan, D. (1987), "Plane strain problems in piezoelectricity", Int. J. Eng. Sci., 25(11-12), 1511-1523. https://doi.org/10.1016/0020-7225(87)90029-2.
  21. Li, D. and He, T. (2018), "Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties", Heliyon, 4(10), E00860. https://doi.org/10.1016/j.heliyon.2018.e00860.
  22. Li, P., Ge, X., Yang, L. and Fang, Y. (2020), "Thermoelastic damping in nanobeam resonators based on effective nonlocal stress model", Proceedings of the 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS), Moscow, October.
  23. Liang, X. and Shen, S. (2011), "Effect of electrostatic force on a piezoelectric nanobeam", Smart Mater. Struct., 21(1), 015001. https://doi.org/10.1088/0964-1726/21/1/015001.
  24. Mahmoud, S.R., Marin, M. and Al-Basyouni, K.S. (2015), "Effect of the initial stress and rotation on free vibrations in transversely isotropic human long dry bone", Versita, 23(1), 171-184. https://doi.org/10.1515/auom-2015-0011.
  25. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.
  26. Marin, M. (2010a), "A partition of energy in thermoelasticity of microstretch bodies", Nonlin. Anal.: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
  27. Marin, M. (2010b), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
  28. Marin, M. and O chsner, A. (2018), "An initial boundary value problem for modeling a piezoelectric dipolar body", Continuum Mech. Thermodyn., 30, 267-278. https://doi.org/10.1007/s00161-017-0599-1.
  29. Othman, M. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Result. Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
  30. Othman, M.I., Atwa, S.Y., Hasona, W.M. and Ahmed, E.A. (2015), "Propagation of plane waves in generalized piezothermoelastic medium: Comparison of different theories", Int. J. Innov. Res. Sci., Eng. Technol., 4(4), 2292-2300.
  31. Rao, S. (2007), Vibration of Continuous Systems, John Wiley & Sons, New Jersey.
  32. Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50(16), 1539-1560. https://doi.org/10.1615/heattransres.2019025622.
  33. Sadek, I. and Abukhaled, M. (2013), "Optimal control of thermoelastic beam vibrations by piezoelectric actuation", J. Control Theor. Appl., 11, 463-467. https://doi.org/10.1007/s11768-013-1204-1.
  34. Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Anal. Univ. "Ovidius" Constanta-Seria Matematica, 22(2), 151-176. https://doi.org/10.2478/auom-2014-0040.
  35. Vahdat, A.S., Rezazadeh, G. and Ahmadi, G. (2012), "Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers", Acta Mechanica Solida Sinica, 25(1), 73-81. https://doi.org/10.1016/S0894-9166(12)60008-1.
  36. Vlase, S., Nastac, C., Marin, M. and Mihalcica, M. (2017), "A method for the study of the vibration of mechanical bars systems with symmetries", Acta Technica Napocensis-Ser.: Appl. Math. Mech. Eng., 60(4), 539-544.
  37. Wang, Y.Z. (2017), "Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory", Appl. Math. Model., 48, 621-634. https://doi.org/10.1016/j.apm.2017.04.018.
  38. Wang, Y.Z., Cui, H.T., Li, F.M. and Kishimoto, K. (2011), "Effects of viscous fluid on wave propagation in carbon nanotubes", Phys. Lett. A, 375, 2448-2451. https://doi.org/10.1016/j.physleta.2011.05.016.
  39. Wang, Y.Z., Li, F.M. and Kishimoto, K. (2012), "Effects of axial load and elastic matrix on flexural wave propagation in nanotube with nonlocal Timoshenko beam model", ASME J. Vib. Acoust., 134(3), 1-7. https://doi.org/10.1115/1.4005832.
  40. Youssef, H.M. (2006), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.
  41. Zenkour, A.M. (2018), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.
  42. Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A. and Hal-Sulami, H. (2020), "Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids", Appl. Math. Mech., 41(4), 637-654. https://doi.org/10.1007/s10483-020-2599-7.