References
- Abd-Alla, A.E.N.N. and Abbas, I. (2011), "A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder", J. Therm. Stress., 25(11), 1009-1025. https://doi.org/10.1080/01495730290074612.
- Aldawody, D.A., Hendy, M.H. and Ezzat, M.A. (2018), "On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative", Microsyst. Technol., 25(8), 2915-2929. https://doi.org/10.1007/s00542-018-4194-6.
- Bhatti, M.M. and Lu, D.Q. (2019), "Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current", Symmetry, 11(3), 1-29. https://doi.org/10.3390/sym11030333.
- Bhatti, M.M., Elelamy, A.F., Sait, S.M. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532-547. https://doi.org/10.3390/sym12040532.
- Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019a), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 35(35), 1950439. https://doi.org/10.1142/S0217984919504396.
- Bhatti, M.M., Yousif, M.A., Mishra, S.R. and Shahid, A. (2019b), "Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface", Pramana, 93(6), 88. https://doi.org/10.1007/s12043-019-1850-z.
- Borjalilou, V., Asghari, M. and Taati, E. (2020), "Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect", J. Vib. Control, 26(11-12), 1042-1053. https://doi.org/10.1177/1077546319891334.
- Eom, C.B. and Trolier-McKinstry, S. (2012), "Thin-film piezoelectric MEMS", Mater. Res. Soc. Bull., 37(11), 1007-1017. https://doi.org/10.1557/mrs.2012.273.
- Eringen, A.C. (1966a), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923.
- Eringen, A.C. (1966b), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4(2), 179-202. https://doi.org/10.1016/0020-7225(66)90022-X.
- Eringen, A.C. (1966c), "Theory of micropolar fluids", J. Math. Mech., 16(1), 1-18. https://doi.org/10.1512/iumj.1967.16.16001.
- Ezzat, M.A., Karamany, A.S. and El-Bary, A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539.
- Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135, 1-20. https://doi.org/10.1140/epjp/s13360-019-00037-8.
- Kaur, I. and Singh, K. (2021a), "Thermoelastic damping in a thin circular transversely isotropic Kirchhoff-Love plate due to GN theory of type III", Arch. Appl. Mech., 91(5), 2143-2157. https://doi.org/10.1007/s00419-020-01874-1.
- Kaur, I. and Singh, K. (2021b), "Effect of memory dependent derivative and variable thermal conductivity in cantilever nano-Beam with forced transverse vibrations", Force. Mech., 5, 100043. https://doi.org/10.1016/j.finmec.2021.100043.
- Kaur, I., Lata, P. and Singh, K. (2020a), "Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature", Wave. Rand. Complex Media, 1-34. https://doi.org/10.1080/17455030.2020.1856451.
- Kaur, I., Lata, P. and Singh, K. (2020b), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer", Adv. Mater. Res., 9(4), 289-309. https://doi.org/10.12989/amr.2020.9.4.289.
- Kaur, I., Singh, K. and Ghita, G.M. (2021), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", ZAMM-J. Appl. Math. Mech., 101(10), 1-13. https://doi.org/10.1002/zamm.202100108.
- Lazar, M. and Agiasofitou, E. (2011), "Screw dislocation in nonlocal anisotropic elasticity", Int. J. Eng. Sci., 49(12), 1404-1414. https://doi.org/10.1016/j.ijengsci.2011.02.011.
- Lesan, D. (1987), "Plane strain problems in piezoelectricity", Int. J. Eng. Sci., 25(11-12), 1511-1523. https://doi.org/10.1016/0020-7225(87)90029-2.
- Li, D. and He, T. (2018), "Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties", Heliyon, 4(10), E00860. https://doi.org/10.1016/j.heliyon.2018.e00860.
- Li, P., Ge, X., Yang, L. and Fang, Y. (2020), "Thermoelastic damping in nanobeam resonators based on effective nonlocal stress model", Proceedings of the 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS), Moscow, October.
- Liang, X. and Shen, S. (2011), "Effect of electrostatic force on a piezoelectric nanobeam", Smart Mater. Struct., 21(1), 015001. https://doi.org/10.1088/0964-1726/21/1/015001.
- Mahmoud, S.R., Marin, M. and Al-Basyouni, K.S. (2015), "Effect of the initial stress and rotation on free vibrations in transversely isotropic human long dry bone", Versita, 23(1), 171-184. https://doi.org/10.1515/auom-2015-0011.
- Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.
- Marin, M. (2010a), "A partition of energy in thermoelasticity of microstretch bodies", Nonlin. Anal.: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
- Marin, M. (2010b), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
- Marin, M. and O chsner, A. (2018), "An initial boundary value problem for modeling a piezoelectric dipolar body", Continuum Mech. Thermodyn., 30, 267-278. https://doi.org/10.1007/s00161-017-0599-1.
- Othman, M. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Result. Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
- Othman, M.I., Atwa, S.Y., Hasona, W.M. and Ahmed, E.A. (2015), "Propagation of plane waves in generalized piezothermoelastic medium: Comparison of different theories", Int. J. Innov. Res. Sci., Eng. Technol., 4(4), 2292-2300.
- Rao, S. (2007), Vibration of Continuous Systems, John Wiley & Sons, New Jersey.
- Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50(16), 1539-1560. https://doi.org/10.1615/heattransres.2019025622.
- Sadek, I. and Abukhaled, M. (2013), "Optimal control of thermoelastic beam vibrations by piezoelectric actuation", J. Control Theor. Appl., 11, 463-467. https://doi.org/10.1007/s11768-013-1204-1.
- Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Anal. Univ. "Ovidius" Constanta-Seria Matematica, 22(2), 151-176. https://doi.org/10.2478/auom-2014-0040.
- Vahdat, A.S., Rezazadeh, G. and Ahmadi, G. (2012), "Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers", Acta Mechanica Solida Sinica, 25(1), 73-81. https://doi.org/10.1016/S0894-9166(12)60008-1.
- Vlase, S., Nastac, C., Marin, M. and Mihalcica, M. (2017), "A method for the study of the vibration of mechanical bars systems with symmetries", Acta Technica Napocensis-Ser.: Appl. Math. Mech. Eng., 60(4), 539-544.
- Wang, Y.Z. (2017), "Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory", Appl. Math. Model., 48, 621-634. https://doi.org/10.1016/j.apm.2017.04.018.
- Wang, Y.Z., Cui, H.T., Li, F.M. and Kishimoto, K. (2011), "Effects of viscous fluid on wave propagation in carbon nanotubes", Phys. Lett. A, 375, 2448-2451. https://doi.org/10.1016/j.physleta.2011.05.016.
- Wang, Y.Z., Li, F.M. and Kishimoto, K. (2012), "Effects of axial load and elastic matrix on flexural wave propagation in nanotube with nonlocal Timoshenko beam model", ASME J. Vib. Acoust., 134(3), 1-7. https://doi.org/10.1115/1.4005832.
- Youssef, H.M. (2006), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.
- Zenkour, A.M. (2018), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.
- Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A. and Hal-Sulami, H. (2020), "Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids", Appl. Math. Mech., 41(4), 637-654. https://doi.org/10.1007/s10483-020-2599-7.