Acknowledgement
This work was financially supported by National Natural Science Foundation of China (Grant No. 51608117), Key Specialized Research and Development Breakthrough Program in Henan province (Grant No. 192102210051).
References
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
- Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78. https://doi.org/10.12989/sem.2016.59.3.066.
- Ayatollahi, M.R. and Aliha, M.R.M. (2004), "Fracture parameters for cracked semi-circular specimen", Int. J. Rock Mech. Min. Sci., 41, 20-25. https://doi.org/10.1016/j.ijrmms.2004.03.014.
- Bayar, G. and Bili, T. (2019), "A novel study for the estimation of crack propagation in concrete using machine learning algorithms", Constr. Build. Mater., 215, 670-685. https://doi.org/10.1016/j.conbuildmat.2019.04.227.
- Behnia, M., Goshtasbi, K., Fatehi Marji, M. and Golshani, A. (2014), "Numerical simulation of crack propagation in layered formations", Arab. J. Geosci., 7(7), 2729-2737. https://doi.org/10.1007/s12517-013-0885-6
- Cheng, J., Wan, Z., Zhang, Y., Li, W., Peng, S.S. and Zhang, P. (2015), "Experimental study on anisotropic strength and deformation behavior of a coal measure shale under room dried and water saturated conditions", Shock Vib., 2015, Article ID 290293. https://doi.org/10.1155/2015/290293.
- Dastgerdi, A.S., Peterman, R.J., Savic, A., Riding, K. and Beck, B.T. (2020), "Prediction of splitting crack growth in prestressed concrete members using fracture toughness and concrete mix design", Constr. Build. Mater., 246, 118523. https://doi.org/10.1016/j.conbuildmat.2020.118523.
- Dong, W., Wu, Z. and Zhou, X. (2016), "Fracture mechanisms of rock-concrete interface: experimental and numerical", J. Eng. Mech., ASCE, 142(7), 04016040. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001099.
- Fowell, R.J., Xu, C. and Dowd, P.A. (2006), "An update on the fracture toughness testing methods related to the cracked chevronnotched Brazilian disk (CCNBD) specimen", Pure Appl. Geophys., 163, 1047-1057. https://doi.org/10.1007/s00024-006-0057-7.
- Golewski, G. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
- Golewski, G. (2019b), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Proc. Commun., 1(5), 66-78. https://doi.org/10.1002/mdp2.82.
- Golewski, G. (2021a), "The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading", Energ., 14(3), 668. https://doi.org/10.3390/en14030668.
- Golewski, G. (2021b), "Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing", Mater., 14(3), 77-89. https://doi.org/10.3390/ma14020319.
- Golewski, G. (2021c), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length -Using the crack tip tracking (CTT) method - In the fracture toughness examinations under Mode II, through digital image correlation", Constr. Build. Mater., 296(3), 111-123. https://doi.org/10.1016/j.conbuildmat.2021.122362.
- Golewski, G. (2021d), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack paths lengths with the use of a new crack tip tracking method", Measure., 181(2), 77-88. https://doi.org/10.1016/j.measurement.2021.109632.
- Golewski, G.L. (2019), "Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems", Constr. Build. Mater., 213, 142-155. https://doi.org/10.1016/j.conbuildmat.2019.04.071.
- Haeri, H. (2015), "Influence of the inclined edge notches on the shearfracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. http://doi.org/10.12989/cac.2015.16.4.605.
- Hong, C.W., Jeon, S.W. and Choi, H.M. (2002), "Shear deformation and failure characteristics of rock-concrete interfaces", J. Korean Soc. Civil Eng., 22(6C), 673-680.
- John, Y.L. and Karadelis, N. (2019), "Interfacial fracture toughness of composite concrete beams", Constr. Build. Mater., 213, 413-423. https://doi.org/10.1016/j.conbuildmat.2019.04.066.
- Jorbat, M.H., Hosseini, M. and Mahdikhani, M. (2020), "Effect of polypropylene fibers on the mode I, mode II, and mixed-mode fracture toughness and crack propagation in fiber-reinforced concrete", Theor. Appl. Fract. Mech., 109, 102723. https://doi.org/10.1016/j.tafmec.2020.102723.
- Kataoka, M., Obara, Y. and Kuruppu, M. (2014), "Estimation of fracture toughness of anisotropic rocks by Semi-Circular Bend (SCB) tests under water vapor pressure", Rock Mech. Rock Eng., 48(4), 1353-1367. https://doi.org/10.1007/s00603-014-0665-y.
- Keles, C. and Tutluoglu, L (2011), "Investigation of proper specimen geometry for mode I fracture toughness testing with flattened Brazilian disc method", Int. J. Fract., 169(1), 61-75. https://doi.org/10.1007/s10704-011-9584-z.
- Kishen, J.M.C. and Saouma, V.E. (2004), "Fracture of rock-concrete interfaces: Laboratory tests and applications", ACI Struct. J., 101(3), 325-331.
- Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P. and Funatsu, T. (2014), "ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen", Rock Mech. Rock Eng., 47(1), 267-274. https://doi.org/10.1007/s00603-013-0422-7.
- Li, Y. and Zhou, H. (2018), "Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method", Geomech. Eng., 14(3), 232-243. http://doi.org/10.12989/gae.2018.18.3.232.
- Lim, I.L., Johnston, I.W. and Choi, S.K. (1993), "Stress intensity factors for semi-circular specimen under three-point bending", Eng. Fract. Mech., 44(3), 363-382. https://doi.org/10.1016/0013-7944(93)90030-V.
- Liu, X. (2020), "Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints", Struct. Eng. Mech., 74(3), 221-234. http://doi.org/10.12989/sem.2020.74.3.221.
- Marji, M.F. (1997), "Modelling of cracks in rock fragmentation with a higher order displacement discontinuity method", PhD Thesis in Mining Engineering (Rock Mechanics), 1(1), 167.
- Marji, M.F. (2014), "Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method", Int. J. Solid. Struct., 51(9), 1716-1736. https://doi.org/10.1016/j.ijsolstr.2014.01.022.
- Marji, M.F., Hosseini-Nasab, H. and Kohsary, A.H. (2007), "A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis", JP J. Solid. Struct., 1(1), 61-91.
- Miura, T., Nakamura, H. and Yamamoto, Y. (2020), "Impact of origination of expansion on three-dimensional expansion crack propagation process due to DEF evaluated by mesoscale discrete model", Constr. Build. Mater., 260, 119911. https://doi.org/10.1016/j.conbuildmat.2020.119911.
- Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance concrete using response surface method", Comput. Concrete, 17(4), 33-39. https://doi.org/10.12989/cac.2016.17.4.033.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337.
- Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739.
- Swan, G. and Alm, O. (1982), "Sub-critical crack growth in Stripa granite: direct observations", Proceedings of the 23rd US Symposium on Rock Mechanics, University of California, Berkeley.
- Taheri, A., Zhang, Y. and Munoz, H. (2020), "Performance of rock crack stress thresholds determination criteria and investigating strength and confining pressure effects", Constr. Build. Mater., 243, 118263. https://doi.org/10.1016/j.conbuildmat.2020.118263.
- Thiercelin, M. and Roegiers, J.C. (1986), "Fracture toughness determination with the modified ring test", Proceedings of the International Symposium on Engineering in Complex Rock Formations, Beijing.
- Tran, K.Q., Satomi, T. and Takahashi, H. (2019), "Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test", J. Build. Eng., 24, 100748. https://doi.org/10.1016/j.jobe.2019.100748.
- Tutluoglu, L. and Keles, C. (2011), "Mode I fracture toughness determination with straight notched disk bending method", Int. J. Rock Mech. Min. Sci., 48(8), 1248-1261. https://doi.org/10.1016/j.ijrmms.2011.09.019.
- Wang, H.W., Wu, Z.M., Wang, Y.J. and Rena, C.Y. (2019), "An analytical method for predicting mode-I crack propagation process and resistance curve of rock and concrete materials", Theor. Appl. Fract. Mech., 100, 328-341. https://doi.org/10.1016/j.tafmec.2019.01.019.
- Wang, X. and Yuan, W. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 65-81. https://doi.org/10.12989/gae.2020.21.3.065.
- Wei, C., Li, Y., Zhu, W., Li, S., Wang, S. and Wang, H. (2020), "Experimental observation and numerical investigation on propagation and coalescence process of multiple flaws in rocklike materials subjected to hydraulic pressure and far-field stress", Theor. Appl. Fract. Mech., 108, 102603. https://doi.org/10.1016/j.tafmec.2020.102603.
- Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012.
- Whittaker, B.N., Singh, R.N. and Sun, Q. (1992), "Rock fracture mechanics, principals, design and applications, developments in geotechnical engineering", Amsterdam.
- Wu, N. and Liang, Z. (2019), "Effect of confining stress on representative elementary volume of jointed rock masses", Geomech. Eng., 18(6), 22-37. https://doi.org/10.12989/gae.2019.18.6.022.
- Xu, N.W., Dai, F., Wei, M.D., Xu, Y. and Zhao, T. (2015), "Numerical observation of three dimensional wing-cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading", Rock Mech. Rock Eng., 49(1), 79-96. https://doi.org/10.1007/s00603-015-0736-8.
- Yang, S., Tang, T.X., Zollinger, D. and Gurjar, A. (1997), "Splitting tension tests to determine rock fracture parameters by peak-load method", Adv. Cement Bas. Mater., 5, 18-28. https://doi.org/10.1016/S1065-7355(97)90011-0.
- Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 44-55. https://doi.org/10.12989/cac.2020.25.6.044.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 22(2), 121-133. https://doi.org/10.12989/sem.2020.22.2.121.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., O ner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
- Zhao, W. and Huang, R. (2015), "Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation", Geomech. Eng., 8(6), 143-154. https://doi.org/10.12989/gae.2015.8.6.143.
- Zhou, C., Zhu, Z., Zhu, A., Zhou, L., Fan, Y. and Lang, L. (2019), "Deterioration of mode II fracture toughness, compressive strength and elastic modulus of concrete under the environment of acid rain and cyclic wetting-drying", Constr. Build. Mater., 228, 116809. https://doi.org/10.1016/j.conbuildmat.2019.116809.
- Zhou, X.P. and Wang, Y. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010.
- Zhou, X.P., Bi, J. and Qian, Q. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4.
- Zhou, X.P., Cheng, H. and Feng, Y.F. (2013), "An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression", Rock Mech. Rock Eng., 47-6, 1961-1986. https://doi.org/10.1007/s00603-013-0511-7.
- Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", Int. J. Rock Mech. Min. Sci., 49, 105-112. https://doi.org/10.1007/978-3-319-07713-0_3.