DOI QR코드

DOI QR Code

선택적 부족분 공급방식에 따른 댐 하류하천의 유황 변화 분석

Flow duration change in downstream of reservoir by selective deficit supply method

  • 최영제 (한국건설기술연구원 수자원하천연구본부) ;
  • 박문형 (한국건설기술연구원 수자원하천연구본부)
  • Choi, Youngje (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Moonhyung (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.10.14
  • 심사 : 2022.11.09
  • 발행 : 2022.12.31

초록

최근 우리나라의 물 관련 정책은 수량-수질-수생태 통합관리 방향으로 진행되고 있으며, 특히 하천의 자연성 회복이 주요한 이슈가 되고 있다. 이수기 댐 운영에 있어서는 가뭄, 물 수요 증가 등으로 용수공급 효과를 극대화시킬 수 있는 부족분 공급방식을 적용하고자하는 시도들이 이어지고 있다. 댐 운영에 부족분 공급방식을 적용하면 댐의 용수공급능력을 극대화 시킬 수는 있지만 하류 하천의 유량이 일정하게 유지된다는 특징이 있다. 자연하천은 오랜 시간동안 형성된 하나의 생태계로 유량의 변동성에 큰 영향을 받는다. 결국 부족분 공급방식을 적용한 댐 운영은 수량 관리에서는 효과적이지만 하천의 자연성 회복 및 수생태 측면에서는 부정적 영향을 미칠 수있다. 본 연구에서는 저수지 모의를 통해 보장량 공급방식, 부족분 공급방식, 선택적 부족분 공급방식 등의 댐 운영이 하류 하천 유황에 미치는 영향을 분석하고, 각 운영방식의 적용 효과에 대해 분석하고자 하였다. 그 결과 보장량 공급방식을 적용하면 하천의 유량 변동성은 크게 유지할 수 있으나 댐의 용수공급능력은 크지 않은 것으로 나타났다. 부족분 공급방식을 활용하면 용수공급능력을 증대시킬 수는 있으나 하류의 평수량과 갈수량의 차이가 매우 작아 유량의 변동성 측면에서는 매우 취약한 것으로 확인되었다. 선택적 부족분 공급방식을 적용할 경우 기간신뢰도를 95% 이상으로 유지하며, 하류 하천의 유황은 보장량 공급방식을 적용할 때와 유사하게 유지할 수 있는 것으로 분석되었다.

Currently, South Korea implements water resources management policies focusing on integrated water quantity, quality and hydro-ecology management. In particular, rehabilitation of natural rivers has become a major issue. As for reservoir operation during non-flood season, efforts have been made continuously to apply the Deficit Supply Method that can maximize water supply to address droughts and increase in water demand. When Deficit Supply Method is applied, the water supply capacity of reservoir can be maximized. However, downstream water flow would remain constant. In consideration that a natural stream, a long-time-created hydro-ecology, can be significantly influenced by flow variability, the Deficit Supply Method-based reservoir operation can generate effective water supply. Still, it may trigger adverse effects from the aspects of natural rehabilitation and hydro-ecology recovery. The main objective of this study is to analyze impacts on downstream flow duration through reservoir simulation by comparing the Firm Supply Method, the Deficit Supply Method and the Selective Deficit Supply Method, and examining each method's effects on reservoir operation. This study found that the Firm Supply Method could maintain water flow variability, but could not maximize water supply capacity. When the Deficit Supply Method was applied, water supply capacity could be increased while remaining vulnerable regarding water flow variability, as a difference between average flow and low flow was negligible at downstream. In comparison, the Selective Deficit Supply Method was found to sustain time-based reliability at 95% or higher, whereas downstream flow duration could be maintained at a level similar to the level generated by the Firm Supply Method.

키워드

과제정보

본 연구는 환경부의 재원으로 한국환경산업기술원의 가뭄 대응 물관리혁신기술개발사업의 지원을 받아 연구되었습니다(2022003610003).

참고문헌

  1. Alexandre, C.M.E. (2014). Ecological impact of streamflow variability in the bio-ecology of freshwater fishes from permanent and temporary Mediterranean river systems, Universidade de Evora, Evora, Portugal.
  2. Bunn, S.E., and Arthington, A.H. (2002). "Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity." Environmental Management, Vol. 30, No. 4, pp. 492-507. https://doi.org/10.1007/s00267-002-2737-0
  3. Cho, Y.H., Park, S.Y., Na, J.M., Kim, T.W., and, Lee, J.H. (2019). "Hydrological and ecological alteration of river dynamics due to multipurpose dams." Journal of Wetlands Research, Vol. 21, No. spc, pp. 16-27. https://doi.org/10.17663/JWR.2019.21.S-1.16
  4. Choi, S.J., Lee, D.R., and, Moon, J.W. (2014). "Comparison of water supply reliability by dam operation methods." Journal of Korea Water Resources Association, Vol. 47, No. 6, pp. 523-536. (in Korean) https://doi.org/10.3741/JKWRA.2014.47.6.523
  5. Choi, Y., Lee, E., Ji, J., and, Yi, J. (2020). "Water yield evaluation of a reservoir system based on a deficit supply in the han river basin." Journal of Civil and Environmental Engineering Research, Vol. 42, No. 3, pp. 333-342. (in Korean)
  6. Dynesius, M., and Nilsson, C. (1994). "Fragmentation and flow regulation of river systems in the northern third of the world." Science, Vol. 266, No. 5186, pp. 753-762. https://doi.org/10.1126/science.266.5186.753
  7. Hashimoto, T., Stedinger, J.R., and Loucks, D.P. (1982). "Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation." Water Resources Research, Vol. 18, No. 1, pp. 14-20. https://doi.org/10.1029/WR018i001p00014
  8. Kang, S., Yoo, C., Lee, D., and, Choi, S. (2016). "Improvement of instream flow evaluation methodology and application." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 1. pp. 295-304. (in Korean) https://doi.org/10.9798/KOSHAM.2016.16.1.295
  9. Kim, N.W., Lee, J.E., and, Lee, B.J. (2007). "Characteristics of flow duration curve according to the operation of multi-purpose dams in the han-river basin." Journal of Civil and Environmental Engineering Research, Vol. 27, No. 1B. pp. 53-63. (in Korean)
  10. Kim, T.G., Yoon, Y.N., and, Ahn, J.H. (2002). "An analysis on the changes of flow duration characteristics due to dam construction." Journal of Korea Water Resources Association, Vol. 35, No. 6, pp. 807-816. (in Korean) https://doi.org/10.3741/JKWRA.2002.35.6.807
  11. K-water (2021) Practical handbook of water resources management.
  12. Lee, D., Moon, J.W., and, Choi, S. (2014). "Performance evaluation of water supply for a multi-purpose dam by deficit-supply operation." Journal of Korea Water Resources Association, Vol. 47, No. 2, pp. 195-206. (in Korean) https://doi.org/10.3741/JKWRA.2014.47.2.195
  13. Lee, J.J., and Kim, Y.J. (2011). "Analysis of flow duration characteristics due to environmental change in Korea river basin." Journal of the Korean Society of Hazard Mitigation, Vol. 11, No. 1, pp. 67-76.
  14. Lee, J.S. (2015). Hydrology, Goomibook.
  15. Magilligan, F.J., and Nislow, K.H. (2005). "Changes in hydrologic regime by dams." Geomorphology, Vol. 71, No. 1-2, pp. 61-78. https://doi.org/10.1016/j.geomorph.2004.08.017
  16. Nilsson, C., Reidy, C.A., Dynesius, M., and, Revenga, C. (2005). "Fragmentation and flow regulation of the world's large river systems." Science, Vol. 308, No. 5720, pp. 405-408. https://doi.org/10.1126/science.1107887
  17. Poff, N.L., and Allan, J.D. (1995). "Functional organization of stream fish assemblages in relation to hydrological variability." Ecology, Vol. 76, No. 2, pp. 606-627. https://doi.org/10.2307/1941217
  18. Richter, B.D., Baumgartner, J.V., Powell, J., and, Braun, D.P. (1996). "A method for assessing hydrologic alteration within ecosystems." Conservation Biology, Vol. 10, No. 4, pp. 1163-1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x
  19. Welcomme, R.L., Bene, C., Brow, C.A., Arthington, A., Patrick Dugan, P., King, J.M., and, Sugunan, V. (2006). "Predicting the water requirements of river fisheries." Wetlands and natural resource management. ecological studies, Edited by Verhoeven, J.T.A., Beltman, B., Bobbink, R., and, Whigham, D.F., Vol. 190, Springer-Verlag, Berlin, Heidelberg, pp. 123-154.
  20. Wootton, J.T., Parker, M.S., and, Power, M.E. (1996). "Effects of disturbance on river food webs." Science, Vol. 273, No. 5281, pp. 1558-1561. https://doi.org/10.1126/science.273.5281.1558