DOI QR코드

DOI QR Code

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks

기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발

  • Jeung, Se Jin (International Center for Urban Water Hydroinformatics Research & Innovation) ;
  • Hur, Dasom (International Center for Urban Water Hydroinformatics Research & Innovation) ;
  • Kim, Byung Sik (Department of Urban and Environmental Disaster Prevention Engineering, Kangwon National University)
  • 정세진 ((재)국제도시물정보과학연구원 정보화연구실) ;
  • 허다솜 ((재)국제도시물정보과학연구원 정보화연구실) ;
  • 김병식 (국립강원대학교 방재전문대학원)
  • Received : 2022.11.01
  • Accepted : 2022.11.21
  • Published : 2022.12.31

Abstract

Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.

기후변화는 전 세계적으로 강우의 빈도와 강도를 증가 시킬 것으로 예측되며 급격한 도시화와 산업화로 인해 도시 지역의 내수 침수 피해로 양상이 바뀌고 있다. 이에 기후변화에 따른 영향평가는 도시계획에 매우 중요한 요소로 언급되고 있으며, 세계기상기구(WMO)는 기상 현상으로부터 발생할 수 있는 사회, 경제적 영향을 고려하는 영향예보의 필요성을 강조하고 있다. 특히 교통에 있어서 도시침수로 인한 교통 시스템의 성능 저하는 사회에 가장 해로운 요소이며 영향을 받는 주요 도로마다 시간당 £ 100k 정도인 것으로 추정하고 있다. 그러나 국내의 경우 현재 기상재해의 발생에 대한 정확한 예보 및 특보를 제공해도 그 영향을 제대로 전달하지 못하고 있다. 따라서 본 연구에서는 도시홍수의 침수심을 제시하고 차량에 영향을 미칠 수 있는 피해에 대처하기 위해 각 지역의 고해상도 분석 및 수문학적 요인을 반영하고, 강우로 인한 홍수 정도와 차량 운행에 미치는 영향 정도를 조사할 필요가 있다고 판단하였다. 이에 강우-침수심-차량속도의 산정식을 간단한 선형회귀식이 아닌 다양한 머신러닝 기법을 이용하여 제시하고자 한다. 또한 또한 기후변화 시나리오를 강우-침수심-차량속도 산정식에 적용하여 집중호우 시 도시하천의 침수를 예측하고 미래 기후변화의 영향을 고려한 도로 침수로 인해 발생할 수 있는 교통 네트워크의 장애를 평가하며, 도시 교통흐름 계획에 이용하는 기술을 개발하고자 한다.

Keywords

Acknowledgement

이 연구는 기상청 자연재해대응 영향예보 생산기술 개발(KMI2021-00313)의 지원으로 수행되었습니다.

References

  1. Arkell, B.P., and Darch, G.J.C. (2006). "Impact of climate change on London's transport network." Municipal Engineer, Vol. 169, pp. 231-237. https://doi.org/10.1680/muen.2006.159.4.231
  2. Choo, K.S., Kang, D.H., and Kim, B.S. (2020) "Impact assessment of urban flood on traffic disruption using rainfall - depth - vehicle speed relationship." Water, Vol. 12, No. 4, 926. doi: 10.3390/w12040926
  3. Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer, NY, U.S.
  4. Eum, H.-I., and Cannon, A.J. (2017). "Intercomparison of projected changes in climate extremes for South Korea: Application of trend preserving statistical downscaling methods to the CMIP5 ensemble." International of Journal of Climatology, Vol. 37, No. 8, pp. 3381-3397. https://doi.org/10.1002/joc.4924
  5. Flood Forecasting Centre (FFC) (2017). Flood guidance statement user guide, version 4. Flood Forecasting Centre, Exeter, UK
  6. Hooper, E., Chapman, L., and Quinn, A. (2014). "Investigating the impact of precipitation on vehicle speeds on UK motorways." Meteorolical. Applications, Vol. 21, pp. 194-201. https://doi.org/10.1002/met.1348
  7. Jeong, E., Oh, C., and Hong, S. (2013). "Prediction of speed by rain intensity using road weather information system and vehicle detection system data." The Korea Institute of Intelligent Transport Systems, Vol. 12, pp. 44-55. https://doi.org/10.12815/kits.2013.12.4.044
  8. Jia, Y., Wu, J., Ben-Akiva, M., Seshadri, R., and Du, Y. (2017). "Rainfall-integrated trac speed prediction using deep learning method." IET Intelligent Transport System, Vol. 11, pp. 531-536. https://doi.org/10.1049/iet-its.2016.0257
  9. Jung, K.Y. (2016). "Impact forecast vision and direction meteorological technology & policy." National Institute of Meteorological Sciences, Vol. 9, pp. 6-22.
  10. Kim, B.S., Hong, S.J., and Lee, H.D. (2013). "The potential effects of climate change on streamflow in rivers basin of Korea using rainfall elasticity." Environmental Engineering Research, Vol. 18, pp. 9-20. doi: 10.4491/eer.2013.18.1.009
  11. Kim, T.-W., and Oh, J.-S. (2015). "Analysis of provincial road in national highway average speed variation according to rainfall intensity." The Journal of the Korea Contents Association, Vol. 15, pp. 510-518. https://doi.org/10.5392/JKCA.2015.15.04.510
  12. Koetse, M.J., and Rietveld, P. (2009). "The impact of climate change and weather on transport: An overview of empirical findings." Transportation Research Part D: Transport and Environment, Vol. 14, No. 3, pp. 205-221. https://doi.org/10.1016/j.trd.2008.12.004
  13. Lam, W., Tam, M.L., Cao, X., and Li, X. (2013). "Modeling the eects of rainfall intensity on trac speed, flow, and density relationships for urban roads." Journal of Transportation Engineering, Vol. 139, pp. 758-770. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000544
  14. Lee, D.S. (2015). Development of functions of S-RAT model using CBD (component based development) methodology, Master Thesis, Kangwon National University, pp. 10-22.
  15. Lu, H. (2014). "Short-term trac prediction using rainfall." International Journal of Signal Processing Systems, Vol. 2, pp. 70-73.
  16. Mashros, N., Ben-Edigbe, J., Alhassan, H.M., and Hassan, S.A. (2014). "Investigating the impact of rainfall on travel speed." Journal Teknologi, Vol. 71, No. 3, pp. 33-38. doi: 10.11113/jt.v71.3756.
  17. Pregnolato, M., Ford, A., Glenis, V., Wilkinson, S., and Dawson, R. (2017). "Impact of climate change on disruption to urban transport networks from pluvial flooding." Journal of Infrastructure Systems, Vol. 23, No. 4, 04017015.
  18. World Meteorological Organization (WMO) (2015). Guideline on multihazard impact-based forecast and warning system. WMO-No. 1150, Geneva, Switzerland, pp. 22-37.
  19. Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: Synthesis report. contribution of working groups I, II and III to the Fifth assessment report of the intergovernmental panel on climate change. Geneva, Swiss.