DOI QR코드

DOI QR Code

An analysis of land displacements in terms of hydrologic aspect: satellite-based precipitation and groundwater levels

수문학적 관점에서의 지반 변위 분석: 인공위성 강우데이터와 지하수위 연계

  • Oh, Seungcheol (Department of Global Smart City, Sungkyunkwan University) ;
  • Kim, Wanyub (Department of Global Smart City, Sungkyunkwan University) ;
  • Kang, Minsun (Department of Global Smart City, Sungkyunkwan University) ;
  • Yoon, Hongsic (School of Civil, Architecture Engineering and Landscape Architecture, Sungkyunkwan University) ;
  • Yang, Jungsuk (Department of Civil Engineering, Kookmin University) ;
  • Choi, Minha (School of Civil, Architecture Engineering and Landscape Architecture, Sungkyunkwan University)
  • 오승철 (성균관대학교 글로벌스마트시티융합전공) ;
  • 김완엽 (성균관대학교 글로벌스마트시티융합전공) ;
  • 강민선 (성균관대학교 글로벌스마트시티융합전공) ;
  • 윤홍식 (성균관대학교 건설환경공학부) ;
  • 양정석 (국민대학교 건설시스템공학과) ;
  • 최민하 (국민대학교 건설시스템공학과)
  • Received : 2022.10.06
  • Accepted : 2022.11.12
  • Published : 2022.12.31

Abstract

As one of the hydrological factors closely related to landslides, precipitation indirectly affects slope stability by generating external forces. Groundwater level fluctuations have attracted more attention lately as factors that directly affect slope stability have become more prominent. Therefore, this study attempted to analyze the relationship between variables through changes in precipitation, groundwater levels, and land displacement. A time series-based analysis was conducted using satellite-based precipitation and point-based groundwater levels in conjunction with the PSInSAR technique to simulate land displacement in urban and mountainous areas. There was a sharp rise in groundwater levels in both urban and mountain areas during heavy rainfall, and a continuous decrease in urban areas when rainfall was low. 6 mm of displacements was observed in the mountainous area as a results of soil outflow from the topsoil layer, which was accompanied by an increased groundwater level. Meanwhile, different results were found in urban area. In response to the rise in groundwater level, the land displacement increases due to the expansion of soil skeletons, while the decrease seems to be attributed to anthropogenic influences. Overall, there was no consistent relationship between groundwater levels and land displacement, which appears to be caused by factors other than hydrological factors. Additional consideration of environmental factors could contribute to a deeper understanding of the relationship between the two factors.

강우는 산사태와 밀접한 연관성을 지니는 수문 인자 중 하나로, 외력을 발생시켜 지반 안정성에 간접적으로 관여한다. 최근에는 지반 안정성에 직접적인 영향을 미치는 인자인 지하수위의 변동에 대한 관심이 증가하고 있다. 이에 본 연구에서는 강우, 지하수위와 지반 변위의 변동을 통해 변수간 관계성을 분석하고자 하였다. PSInSAR 기법을 사용하여 도심과 산지에서의 지반 변위 모의 결과를 도출하였고, 위성 기반 강우와 지점 기반 지하 수위 자료와 연계하여 시계열 기반 분석을 실시하였다. 고강도 강우에 대해 도심과 산지에서 모두 급격한 지하수위의 상승이 나타났으며, 무강우 및 저강우 기간에 대해 도심에서는 지속적인 감소 경향이 나타났다. 지하수위의 증가에 대해 산지에서는 6 mm 수준의 지반 침하가 관측되었으며, 이는 표토층의 토사 유출로 인한 결과로 보인다. 한편 도심에서는 다양한 결과가 나타났는데 지하수위 상승에 대한 지반 변위의 증가와 토양 뼈대의 확장으로 인한 결과로 볼 수 있으나, 지반 변위의 감소는 인위적 영향에서 기인된 결과로 보인다. 전반적으로 지하수위와 지반 변위 간 관계성이 일관되게 나타나지 않았는데, 이는 수문인자 외의 다른 영향인자로 인한 결과로 보인다. 두 인자 간 관계성에 영향을 미치는 환경 인자들이 추가로 고려된다면 관계성을 보다 면밀히 파악하는 데 기여할 수 있을 것으로 보인다.

Keywords

Acknowledgement

이 논문은 행정안전부 '자연재난 정책연계형 기술개발사업'의 지원을 받아 수행된 연구임(2021-MOIS35-003).

References

  1. Ahmad, W., Choi, M., Kim, S., and Kim, D. (2017). "Detection of land subsidence due to excessive groundwater use varying with different land cover types in Quetta valley, Pakistan using ESA-sentinel satellite data." Natural Hazards and Earth System Sciences Discussions, Vol. 40, No. 24, pp.9572-9603.
  2. Ahmad, W., Choi, M., Kim, S., and Kim, D. (2019). "Detection of land subsidence and its relationship with land cover types using ESA Sentinel satellite data: a case study of Quetta Valley, Pakistan." International Journal of Remote Sensing, Vol. 40, No. 24, pp. 9572-9603. https://doi.org/10.1080/01431161.2019.1633704
  3. Baik, J., Park, J., Ryu, D., and Choi, M. (2016). "Geospatial blending to improve spatial mapping of precipitation with high spatial resolution by merging satellite-based and ground-based data." Hydrological Processes, Vol. 30, No. 16, pp. 2789-2803. https://doi.org/10.1002/hyp.10786
  4. Chen, F., Lin, H., Zhang, Y. and Lu, Z. (2012). "Ground subsidence geo-hazards induced by rapid urbanization: Implications from InSAR observation and geological analysis." Natural Hazards and Earth System Sciences, Vol. 12, No. 4, pp. 935-942. https://doi.org/10.5194/nhess-12-935-2012
  5. Chen, M., Tomas, R., Li, Z., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., and Gong, X. (2016). "Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry." Remote Sensing, Vol. 8, No. 6, 468.
  6. Chithra, S., Nair, M.H., Amarnath, A. and Anjana, N. (2015). "Impacts of impervious surfaces on the environment." International Journal of Engineering Science Invention, Vol. 4, No. 5, pp. 27-31.
  7. Elkateb, T., Chalaturnyk, R., and Robertson, P.K. (2003). "An overview of soil heterogeneity: quantification and implications on geotechnical field problems." Canadian Geotechnical Journal, Vol. 40, No. 1, pp. 1-15. https://doi.org/10.1139/t02-090
  8. Galloway, D.L., and Hoffmann, J. (2007). "The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology." Hydrogeology Journal, Vol. 15, No. 1, pp. 133-154. https://doi.org/10.1007/s10040-006-0121-5
  9. Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C.P. (2007). "Rainfall thresholds for the initiation of landslides in central and southern Europe." Meteorology and Atmospheric Physics, Vol. 98, No. 3, pp. 239-267. https://doi.org/10.1007/s00703-007-0262-7
  10. Han, H., Shi, B., and Zhang, L. (2021). "Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change." Engineering Geology, Vol. 280, 105876.
  11. Hicks, M.A., and Nuttall, J.D. (2012). "Year influence of soil heterogeneity on geotechnical performance and uncertainty: A Stochastic View on EC7." Proceedings 10th International Probabilistic Workshop, IPW, Universitat Stuttgart, Stuttgart, pp. 215-227.
  12. Hong, Y.-M., and Wan, S. (2011). "Forecasting groundwater level fluctuations for rainfall-induced landslide." Natural Hazards, Vol. 57, No. 2, pp. 167-184. https://doi.org/10.1007/s11069-010-9603-9
  13. Huang, B., Shu, L., and Yang, Y. (2012). "Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modelling." Water Resources Management, Vol. 26, No. 14, pp. 4225-4239.
  14. Jiang, M., Ding, X., Li, Z., Tian, X., Wang, C., and Zhu, W. (2014). "InSAR coherence estimation for small data sets and its impact on temporal decorrelation extraction." IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 10, pp. 6584-6596. https://doi.org/10.1109/TGRS.2014.2298408
  15. Kim, K., Park, J., Baik, J., and Choi, M. (2017). "Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia." Atmospheric Research, Vol. 187, pp. 95-105. https://doi.org/10.1016/j.atmosres.2016.12.007
  16. Kim, Y.H., Eum, K.Y., Han, S.J., Park, Y.G., and Jung, J.H. (2015). "A study on settlement characteristics of earthwork subgrade with lowering the groundwater in high-speed railway." Journal of the Korean Geotechnical Society, Vol. 31, No. 5, pp. 67-74. https://doi.org/10.7843/kgs.2015.31.5.67
  17. Kitutu, M., Muwanga, A., Poesen, J., and Deckers, J.A. (2009). "Influence of soil properties on landslide occurrences in Bududa district, Eastern Uganda." African Journal of Agricultural Research, Vol. 4, No. 7, pp. 611-620.
  18. Mahmoodinasab, F., and Mohseni, N. (2021). "A spatiotemporal analysis of the relationship between groundwater level and ground surface displacement using Sentinel-1 SAR data." Arabian Journal of Geosciences,Vol. 14, No. 12, pp. 1-10. https://doi.org/10.1007/s12517-020-06304-8
  19. Pacheco-Martinez, J., Hernandez-Marin, M., Burbey, T.J., GonzalezCervantes, N., Ortiz-Lozano, J.a., Zermeno-De-Leon, M.E., and Solis-Pinto, A. (2013). "Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, Mexico." Engineering Geology, Vol. 164, pp. 172-186. https://doi.org/10.1016/j.enggeo.2013.06.015
  20. Prokesova, R., Medveďova, A., Taborik, P., and Snopkova, Z. (2013). "Towards hydrological triggering mechanisms of large deepseated landslides." Landslides, Vol. 10, No. 3, pp. 239-254. https://doi.org/10.1007/s10346-012-0330-z
  21. Segoni, S., Piciullo, L., and Gariano, S.L. (2018). "A review of the recent literature on rainfall thresholds for landslide occurrence." Landslides, Vol. 15, No, 8, pp. 1483-1501. https://doi.org/10.1007/s10346-018-0966-4
  22. Van Asch, T.W., Malet, J.-P., and Bogaard, T. (2009). "The effect of groundwater fluctuations on the velocity pattern of slowmoving landslides." Natural Hazards and Earth System Sciences, Vol. 9, No. 3, pp. 739-749. https://doi.org/10.5194/nhess-9-739-2009
  23. Van Ty, T., Minh, H.V.T., Avtar, R., Kumar, P., Van Hiep, H., and Kurasaki, M. (2021). "Spatiotemporal variations in groundwater levels and the impact on land subsidence in CanTho, Vietnam." Groundwater for Sustainable Development, Vol. 15, 100680.
  24. Wang, T., Liao, M., and Perissin, D. (2009). "InSAR coherencedecomposition analysis." IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 1, pp. 156-160. https://doi.org/10.1109/LGRS.2009.2029126
  25. Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S.I., Waldner, P., and Stahli, M. (2020). "Assessing the potential of soil moisture measurements for regional landslide early warning." Landslides, Vol. 17, No. 8, pp. 1881-1896. https://doi.org/10.1007/s10346-020-01400-y
  26. Yin, G., Baik, J., and Park, J. (2022). "Comprehensive analysis of GEO- KOMPSAT-2A and FengYun satellite-based precipitation estimates across Northeast Asia." GIScience & Remote Sensing, Vol. 59, No. 1, pp. 782-800.
  27. Yoo, C.S., and Kim, S.B. (2007). "A study on ground surface settlement due to groundwater drawdown during tunnelling." Journal of Korean Tunnelling and Underground Space Association, Vol. 9, No. 4, pp. 361-375.
  28. Zamanirad, M., Sarraf, A., Sedghi, H., Saremi, A., and Rezaee, P. (2020). "Modeling the influence of groundwater exploitation on land subsidence susceptibility using machine learning algorithms." Natural Resources Research, Vol. 29, No. 2, pp. 1127-1141. https://doi.org/10.1007/s11053-019-09490-9
  29. Zhang, W., Furtado, K., Wu, P., Zhou, T., Chadwick, R., Marzin, C., Rostron, J., and Sexton, D. (2021). "Increasing precipitation variability on daily-to-multiyear time scales in a warmer world." Science Advances, Vol. 7, No. 31, eabf8021.