DOI QR코드

DOI QR Code

The study on the selection of performance test conditions for indoor and outdoor experiments of snowfall in winter

겨울철 강설 실내외 실험을 위한 성능 시험 조건 선정에 관한 연구

  • Kim, Byeongtaek (Observation Research Department, National Institute of Meteorological Sciences) ;
  • In, Sora (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Sangjo (Korea Meteorologist Association)
  • Received : 2022.10.05
  • Accepted : 2022.10.28
  • Published : 2022.12.31

Abstract

The purpose of this research is to select representative observation stations for winter observation equipment performance tests and to present indoor and outdoor conditions for performance tests by considering snowfall, snowfall days, latitude, and altitude distribution for observation stations operated by the Korea Meteorological Administration. Using the snowfall data observed during the winter for 30 years (1981-2010), ten representative observation stations are selected to consider the classification of snowfall days by class, latitude, and altitude distribution of observation stations. As a result of analysis, the suitable point for outdoor experiments was selected as Daegwallyeong, the average number of snowfall days and snowfall days of 5cm or more were 57.5 and 13.2 days, respectively. The indoor experimental conditions are considered to be suitable under temperatures of -15 to 5℃ and humidity of 50% or higher. Results of this research can be used as basic information for conditions and test beds for performance tests of equipment that can respond to heavy snow disasters in winter.

본 연구는 기상청에서 운영하고 있는 관측지점을 대상으로 강설량과 강설 일수를 위도와 고도 분포를 고려하여 겨울철 강설 측정 장비의 성능 시험을 위한 대표 관측지점과 실내외실험을 위한 조건을 제시하기 위해 수행하였다. 30년간(1981~2010) 관측한 겨울철 강설 자료를 사용하여 강설 일수의 계급별 분류, 관측지점의 위도 및 해발고도 분포를 고려하여 대표관측지점 10개소를 선정하였다. 분석결과 실외 실험에 적합한 지점은 연평균 강설 일수와 5 cm 이상의 적설 일수가 각각 57.5일, 13.2일로 나타난 대관령을 선정하였다. 실내 실험조건은 기온 -15~5℃ 습도 50% 이상의 조건이 적합하다고 사료된다. 연구 결과는 겨울철 대설재난에 대응할 수 있는 장비의 성능 시험을 위한 조건과 실외 실험장소에 대한 기초자료 로 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 「국가 기상관측장비 및 관측자료 표준화」(KMA2018-00221)의 지원으로 수행되었습니다.

References

  1. Chen, H., Sun, J., and Lin, W. (2020). "Anthropogenic influence would increase intense snowfall events over parts of the Northern Hemisphere in the future." Environmental Research Letters, Vol. 15, 114022.
  2. Choi, G.Y. and Kim, J.S. (2010). "Surface synoptic climatic patterns for heavy snowfall events in the Republic of Korea." Journal of the Korean Geographical Society, Vol. 45, No. 3, pp. 319-341.
  3. Dong, C. (2018). "Remote sensing, hydrological modeling and in situ observations in snow cover research: A review." Journal of Hydrology, Vol. 561, pp. 573-583. https://doi.org/10.1016/j.jhydrol.2018.04.027
  4. Jeong, G.H., and Park, H.S. (2015). "The necessity to respond to disasters through rapid and accurate heavy snow damage prediction." Journal of Disaster Prevention, Vol. 17, No. 5, pp.18-28.
  5. Kim, G.Y. (2020). "The study for classifying snowfall area types with consideration of snowfall characteristics and times." Journal of the Korean Society of Disaster Information, Vol. 16, No. 1, pp. 21-33.
  6. Kim, G.Y., Joo, H.T., and Kim, H.J. (2018). "The study for damage effect factors of heavy snowfall disasters: Focused on heavy snowfall disasters during the period of 2005 to 2014." Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 2, pp. 125-136.
  7. Kim, S.B., Shin, H.J., Ha, R., and Kim, S. J. (2012). "Spatio-temporal Analysis of Snowfall for 5 Heavy Snowfall Areas in South Korea." Journal of the Korean Society of Civil Engineers B, Vol. 32, No. 2B, pp. 103-111.
  8. Korea Meteorological Administration (KMA) (2011). Climatological normals of Korea. 11-1360000-000077-14.
  9. Korea Meteorological Administration (KMA) (2014). A hand-held forecasting technique. 11-1360000-000807-10.
  10. Kwon, S.H., and Chung, G.h. (2017). "Estimation of snow damages using multiple regression model - The case of Gangwon Province -." Journal of the Korean Society of Civil Engineers, Vol. 37, No. 1, pp. 61-72. https://doi.org/10.12652/Ksce.2017.37.1.0061
  11. Kwon, S.H., Park, H.S., and Chung, G.H. (2016). "Analysis of snow vulnerability and adaptation policy for heavy snow." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 2, pp. 363-368. https://doi.org/10.9798/KOSHAM.2016.16.2.363
  12. Lee, H.J., and Chung, G.H. (2019). "Prediction and applicability of snow damage using random forest." Journal of Wetlands Research, Vol. 21, No. 2, pp. 157-162.
  13. Ministry of the Interior and Safety (MOIS) (2020). Statistical yearbook of natural disaster 2020. 11-1741000-000002-11.
  14. Oh, Y.R., and Chung, G.h. (2017). "Estimation of snow damage and proposal of snow damage threshold based on historical disaster data." Journal of the Korean Society of Civil Engineers, Vol. 37, No. 2, pp. 325-331. https://doi.org/10.12652/Ksce.2017.37.2.0325
  15. Quante, L., Willner, S., Middelanis, R., and Levermann, A. (2021). "Regions of intensification of extreme snowfall under future warming." Scientific Reports, Vol. 11, 16621.
  16. Strawa, A.W., Latshaw, G., Farkas, S., Russell, P., and Zornetzer, S. (2020). "Arctic ice loss threatens national security: A path forward." Orbis, Vol. 64, No. 4, pp. 622-636. https://doi.org/10.1016/j.orbis.2020.08.010