참고문헌
- N. Relitti et al. (2020). Telomerase-based cancer therapeutics: A review on their clinical trials. Current Topics in Medicinal Chemistry, 20(6), 433-457. https://doi.org/10.2174/1568026620666200102104930
- Y. H. Park et al. (2019). GV1001 inhibits cell viability and induces apoptosis in castration-resistant prostate cancer cells through the AKT/NF-kappaB/VEGF pathway. Journal of Cancer. 10(25), 6269-6277. https://doi.org/10.7150/jca.34859
- V. E. Shaw et al. (2010). Current status of GV1001 and other telomerase vaccination strategies in the treatment of cancer. Expert Review of Vaccines, 9(9), 1007-16. https://doi.org/10.1586/erv.10.92
- J. Choi et al. (2015). The anti-inflammatory effect of GV1001 mediated by the down regulation of ENO1-induced pro-inflammatory cytokine production. Immune Network, 15(6), 291-303. https://doi.org/10.4110/in.2015.15.6.291
- Y. J. Ko et al. (2015). The anti-inflammatory effect of human telomerase-derived peptide on P. gingivalis lipopolysaccharide-induced inflammatory cytokine production and its mechanism in human dental pulp cells. Mediators of Inflammation, 2015(385127), 1-8.
- T. Y. Koo et al. (2014). Protective effect of peptide GV1001 against renal ischemia-reperfusion injury in mice. Transplant Proceedings. 46(4), 1117-22. https://doi.org/10.1016/j.transproceed.2013.12.019
- E. K. Lee et al. (2020). A telomerase-derived peptide vaccine inhibits laser-induced choroidal neovascularization in a rat model. Translational Research. 216, 30-42. https://doi.org/10.1016/j.trsl.2019.10.001
- Y. M. Choi et al. (2020). A telomerase-derived peptide exerts an anti-hepatitis B virus effect via mitochondrial DNA stress-dependent type I interferon production. Frontiers in Immunology. 11(652), DOI : 10.3389/fimmu.2020.00652
- J. Auwerx et al. (1991). The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia, 47(1), 22-31. https://doi.org/10.1007/BF02041244
- Y. Zhang et al. (2019). Therapeutic approaches in mitochondrial dysfunction, inflammation, and autophagy in uremic cachexia: role of aerobic exercise. Mediators in Inflammations, 2019(2879014), 1-11.
- C. Madeddu, A. Maccio & G. Mantovani. (2012). Multitargeted treatment of cancer cachexia. Critical Reviews in Oncogenesis, 17(3), 305-14. https://doi.org/10.1615/CritRevOncog.v17.i3.80
- C. Staff et al. (2014). Telomerase (GV1001) vaccination together with gemcitabine in advanced pancreatic cancer patients. International Journal of Oncology, 45(3), 1293-303. https://doi.org/10.3892/ijo.2014.2496
- W. Chanput, J. J. Mes & H. J. Wichers. (2014). THP-1 cell line: an in vitro cell model for immune modulation approach. International Immuno pharmacology, 23(1), 37-45. https://doi.org/10.1016/j.intimp.2014.08.002
- N. E. Annels et al. (2014). The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunololgy and Immunotherapy, 63(2), 175-83. https://doi.org/10.1007/s00262-013-1502-y
- C. C. Hsu et al. (2013). Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NF-κB and MAPK activation. Biochemical Pharmacology. 85(3), 385-95. https://doi.org/10.1016/j.bcp.2012.11.002
- K. L. Zapadka. (2017). Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface focus. 7(6), 20170030. https://doi.org/10.1098/rsfs.2017.0030