Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).
References
- Abou-matar, H. and Goble, G.G. (2004), "SPT dynamic analysis and measurements", In Current Practices and Future Trends in Deep Foundations, 441-462.
- ASTM D1586 (2011), Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils; ASTM International: West Conshohocken, PA, USA. https://doi.org/10.1520/d1586-11
- ASTM D4633 (2011), Standard Test Method for Energy Measurement for Dynamic Penetrometers, ASTM International, West Conshohocken, PA, USA.
- ASTM D6951 (2011), Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications, ASTM International, West Conshohocken, PA, USA.
- Bajaj, K. and Anbazhagan, P. (2019), "Seismic site classification and correlation between VS and SPT-N for deep soil sites in Indo-Gangetic Basin", Appl. Geophys., 163, 55-72. https://doi.org/10.1016/j.jappgeo.2019.02.011.
- Byun, Y.H. and Lee, J.S. (2013), "Instrumented dynamic cone penetrometer corrected with transferred energy into a cone tip: a laboratory study", Geotech. Test. J., 36(4), 533-542. https://doi.org/10.1520/gtj20120115.
- Byun, Y.H., Yoon, H.K., Kim, Y.S., Hong, S.S. and Lee, J.S. (2014), "Active layer characterization by instrumented dynamic cone penetrometer in Ny-Alesund, Svalbard", Cold Reg. Sci. Technol., 104, 45-53. https://doi.org/10.1016/j.coldregions.2014.04.003.
- Daniel, C.R., Howie, J.A., Jackson, R.S. and Walker, B. (2005), "Review of standard penetration test short rod corrections", J. Geotech. Geoenviron. Eng., 131(4), 489-497. https://doi.org/10.1061/(asce)1090-0241(2005)131:4(489).
- Du, Y.J., Jiang, N.J., Liu, S.Y., Horpibulsuk, S. and Arulrajah, A. (2016), "Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue", Soils Found., 56, 301-314. https://doi.org/10.1016/j.sandf.2016.02.012
- Gabr, M.A., Hopkins, K., Coonse, J. and Hearne, T. (2000), "DCP criteria for performance evaluation of pavement layers", J. Perform. Constr. Fac., 14(4), 141-148. https://doi.org/10.1061/(asce)0887-3828(2000)14:4(141)
- Hong, W.T., Byun, Y.H., Kim, S.Y. and Lee, J.S. (2016), "Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures", Smart Struct. Syst., 18(2), 197-216. https://doi.org/10.12989/sss.2016.18.2.197.
- Howie, J.A., Daniel, C.R., Jackson, R.S. and Walker, B. (2003), "Comparison of energy measurement methods in the standard penetration test", Report prepared for the US Bureau of Reclamation, Geotechnical Research Group, Department of Civil Engineering, The University of British Columbia, Vancouver, Canada.
- Kim, S.Y., Hong, W.T. and Lee, J.S. (2019), "Role of the coefficient of uniformity on the California bearing ratio, penetration resistance, and small strain stiffness of coarse arctic soils", Cold Reg. Sci. Technol., 160, 230-241. https://doi.org/10.1016/j.coldregions.2019.02.012
- Kim, S.Y. and Lee, J.S. (2020), "Energy correction of dynamic cone penetration index for reliable evaluation of shear strength in frozen sand-silt mixtures", Acta Geotech., 15(4), 947-961. https://doi.org/10.1007/s11440-019-00812-y.
- Kleyn, E.G. (1975), "The Use of the Dynamic Cone Penetrometer (DCP)", Transvaal Roads Department, Report Number L2/74, Pretoria.
- Kovacs, W.D. (1979), "Velocity measurement of free-fall SPT hammer", J. Geotech. Geoenviron. Eng., 105(1), 1-10. https://doi.org/10.1061/ajgeb6.0000748.
- Kodicherla, S.P.K. and Nandyala, D.K. (2016), "Use of CPT and DCP based correlations in characterization of subgrade of a highway in Southern Ethiopia Region", Int. J. Geo-Eng., 7(1), 1-15. https://doi.org/ 10.1186/s40703-016-0025-8.
- Langton, D.D. (1999), "The Panda lightweight penetrometer for soil investigation and monitoring material compaction", Ground Engineering.
- Lee, C., Lee, J.S., An, S. and Lee, W. (2010), "Effect of secondary impacts on SPT rod energy and sampler penetration", J. Geotech. Geoenviron. Eng., 136(3), 522-526. https://doi.org/10.1061/(asce)gt.1943-5606.0000236.
- Lee, J.S. and Byun, Y.H. (2020), "Instrumented cone penetrometer for dense layer characterization", Sensors, 20(20), 5782. https://doi.org/10.3390/s20205782.
- Lee, J.S., Kim, S.Y., Hong, W.T. and Byun, Y.H. (2019), "Assessing subgrade strength using an instrumented dynamic cone penetrometer", Soils Found., 59(4), 930-941. https://doi.org/10.1016/j.sandf.2019.03.005.
- Mir, M., Bouafia, A., Rahmani, K. and Aouali, N. (2017), "Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests", Geomech. Eng., 13(1), 119-139. https://doi.org/10.12989/gae.2017.13.1.119.
- Mohammadi, S.D., Nikoudel, M.R., Rahimi, H. and Khamehchiyan, M. (2008), "Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils", Eng. Geol., 101(3-4), 195-203. https://doi.org/10.1016/j.enggeo.2008.05.006.
- Morgano, C.M. and Liang, R. (1992), "Energy transfer in SPT-Rod length effect", In International conference on the application of stress-wave theory to piles, 121-127.
- Odebrecht, E., Schnaid, F., Rocha, M.M. and de Paula Bernardes, G. (2005), "Energy efficiency for standard penetration tests", J. Geotech. Geoenviron. Eng., 131(10), 1252-1263. https://doi.org/10.1061/(asce)1090-0241(2005)131:10(1252).
- Sancio, R.B. and Bray, J.D. (2005), "An assessment of the effect of rod length on SPT energy calculations based on measured field data", Geotech. Test. J., 28(1), 22-30. https://doi.org/10.1520/gtj11959.
- Scala, A.J. (1956), "Simple methods of flexible pavement design using cone penetrometers", New Zealand Eng., 11(2), 34-44.
- Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 1425-1445. https://doi.org/10.1061/(asce)0733-9410(1985)111:12(1425).
- Skempton, A.W. (1986), "Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation", Geotechnique, 36(3), 425-447. https://doi.org/10.1680/geot.1986.36.3.425.
- Sujatha, E.R., Geetha, A.R., Jananee, R. and Karunya, S.R. (2018), "Strength and mechanical behaviour of coir reinforced lime stabilized soil", Geomech. Eng., 16(6), 627-634. https://doi.org/10.12989/gae.2018.16.6.627.
- Webster, S.L., Grau, R.H. and Williams, T.P. (1992), "Description and Application of Dual Mass Dynamic Cone Penetrometer", Instruction Report GL-92-3, Department of the Army, US Army Corp of Engineers, Washington, DC.
- Youd, T.L. and Idriss, I.M. (2001), "Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron. Eng., 127(4), 297-313. https://doi.org/10.1061/(asce)1090-0241(2001)127:4(297).
- Sy, A. and Campanella, R.G. (1993), "Standard penetration test energy measurements using a system based upon the personal computer", Can. Geotech. J., 30, 876-882. https://doi.org/10.1139/t93-078