DOI QR코드

DOI QR Code

Strength properties of lime stabilized and fibre reinforced residual soil

  • Okonta, Felix N. (Department of Civil Engineering Science, University of Johannesburg) ;
  • Nxumalo, Sinenkosi P. (Department of Civil Engineering Science, University of Johannesburg)
  • Received : 2021.03.18
  • Accepted : 2021.10.08
  • Published : 2022.01.10

Abstract

The effect of discrete polypropylene fibre reinforcement on shear strength parameters, tensile properties and isotropic index of stabilized compacted residual subgrade was investigated. Composites of compacted subgrade were developed from polypropylene fibre dosage of 0%, 1%, 2.5% and 4% and 3% cement binder. Saturated compacted soil benefited from incremental fibre dosage, the mobilized friction coefficient increased to a maximum at 2.5% fibre dosage from 0.41 to 0.58 and the contribution due to further increase in fibre dosage was marginal. Binder stabilization increased the degree of isotropy for unreinforced soil at lower fibre dosage of 1% and then decreased with higher fibre dosage. Saturation of 3% binder stabilized soil decreased the soil friction angle and the degree of isotropy for both unstabilized and binder stabilized soil increased with fibre dosage. The maximum tensile stress of 3% binder stabilized fibre reinforced residual soil was 3-fold that of 3% binder stabilized unreinforced soil. The difference in computed and measured maximum tensile and tangential stress decreased with increase in fibre dosage and degree of stabilization and polypropylene fibre reinforced soil met local and international criteria for road construction subgrade.

Keywords

References

  1. Anagnostopoulos, C.A., Tzetzis, D. and Berketis, K. (2014), "Shear strength behaviour of polypropylene fibre reinforced cohesive soils", Geomech. Geoeng., 9(3), 241-251. https://doi.org/10.1080/17486025.2013.804213.
  2. Aryal, S. and Kolay, P.K. (2020), "Long-term durability of ordinary Portland cement and polypropylene fibre stabilized kaolin soil using Wetting-Drying and Freezing-Thawing test", Int. J. Geosynth. Ground Eng., 6(1). https://doi.org/10.1007/s40891-020-0191-9.
  3. Attom, M.F. and Al-Tamimi, A.K. (2010), "Effects of polypropylene fibers on the shear strength of sandy soil", Int. J. Geosci., 1(1), 44-50. https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=21588359-201005-201211020039-201211020039-44-50. https://doi.org/10.4236/ijg.2010.11006
  4. Blight, G. (1998), Mechanics of Tropical Residual Soils, Cengage, Pretoria: Building Publication, South Africa.
  5. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65.
  6. Boz, A., Sezer, A., O zdemir, T., Hizal, G. and Azdeniz Dolmaci, O. (2018), "Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers", Arabian J. Geosci., 11(6), 1-14. https://doi.org/10.1007/s12517-018-3458-x.
  7. Brink, A.B.A. (1998), Engineering Geology of Southern Africa, Reprinted edn. Pretoria: Building Publication, South Africa.
  8. Choubane, B., Armaghani, J.M. and Ho, R.K. (2001), "Full-Scale laboratory evaluation of polypropylene fiber reinforcement of subgrade soils", Transportation Research Board Annual Meeting, Washington Paper No 01-2157.
  9. Chhun, T.K., Choo, H., Kaothon, P. and Yune, C.Y. (2020), "Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black", Geomech. Eng., 23(1), 31-38. http://doi.org/10.12989/gae.2020.23.1.031.
  10. Consoli, N.C., Montardo, J.P., Prietto, P.D.M. and Pasa, G.S. (2002), "Engineering behavior of a sand reinforced with plastic waste", J. Geotech. Geoenviron. Eng., 128(6), 462-472. http://ascelibrary.org/doi/abs/10.1061/(ASCE)10900241(2002)128:6(462).
  11. Diambra, A., Ibraim, E., Muir Wood, D. and Russell, A.R. (2010), "Fibre reinforced sands: Experiments and modelling", Geotext. Geomembranes, 28(3), 238-250. http://doi.org/10/1016/j.geotexmem.2009.09.010. https://doi.org/10.1016/j.geotexmem.2009.09.010
  12. Gray, D.H. and Ohashi, H. (1983), "Mechanics of fiber reinforcement in sand", J. Geotech. Eng., 109(3), 335-353. http://ascelibrary.org/doi/abs/10.1061/(ASCE)07339410(1983)109:3(335).
  13. Gregory, G.H. and Chill, D.S. (1998), "Stabilization of earth slopes with fiber reinforcement", Proceedings of the 6th International Conference on Geosynthetics, Atlanta.
  14. Gupta, D. and Kumar, A. (2016), "Strength characterization of cement stabilized and fiber reinforced Clay-Pond ash mixes", Int. J. Geosynth. Ground Eng., 2(4), 1-11. https://doi.org/10.1007/s40891-016-0069-z.
  15. Ibraim, E. and Fourmont, S. (2006), "Behaviour of sand reinforced with fibers", Proceedings of the Geotechnical Symposium in Roma, Netherlands, 807-818.
  16. Ibraim, E., Diambra, A., Muir Wood, D. and Russell, A.R. (2010), "Static liquefaction of fibre reinforced sand under monotonic loading", Geotext. Geomembranes, 28(4), 374-385. http://doi.org/10.1016/j.geotexmem.2009.12.001.
  17. Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Hungarian Soc. Architects and Engineers, 25, 355-358.
  18. Jianhong, Y., Wu, F.Q. and Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", Int. J. Rock Mech. Min. Sci., 46(3), 568-576. http://doi.org/10.1016/j.ijrmms.2008.08.004.
  19. Laskar, A. and Pal, S.K. (2013), "Effects of waste plastic fibres on compaction and consolidation behaviour of reinforced soil", Electron. J. Geotech. Eng., 18, 1547-1558.
  20. Michalowski, R.L. and Ermak, J. (2003), "Triaxial compression of sand reinforced with fibers", J. Geotech. Geoenviron. Eng., 129(2), 125-136. http://ascelibrary.org/doi/abs/10.1061/(ASCE)10900241(2003)129:2(125).
  21. Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. and Aldava, M. (2017), "Shear strength of a fibre-reinforced clay at large shear displacement when subjected to different stress histories", Geotext. Geomembranes, 45(5), 422-429. http://dx.doi.org/10.1016/j.geotexmem.2017.06.002.
  22. Mirzababaei, M., Mohamed, M. and Miraftab, M. (2017), "Analysis of strip footings on fiber-reinforced slopes with the aid of particle image velocimetry", J. Mater. Civil Eng., 29(4), 4016243. http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.19435533.0001758.
  23. Mohammed, A.M., Indra, A.S.H., Harahap, S.H., Marto, A., Alavi, S.V., Abad, N.K. and Montasir, O. and Ali, A. (2019), "Undrained shear strength and microstructural characterization of treated soft soil with recycled materials", Geomech. Eng., 18(4), 427-437. http://doi.org/10.12989/gae.2019.18.4.427.
  24. Oderah, V. and Kalumba, D. (2016), "Effect of water on the strength behaviour of fibre reinforced soils", Proceedings of the 1st Southern African Geotechnical Conference.
  25. Onal, O. and Sariavci, C. (2019), "Stabilization of Meles Delta soils using cement and lime mixtures", Geomech. Eng., 19(6) 543-554. http://doi.org/10.12989/gae.2019.19.6.543.
  26. Pradhan, P., Kar, R. and Naik, A. (2012), "Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil", Geotech. Geological Eng., 30(1), 15-25. https://doi.org/10.1007/s10706-011-9445-6.
  27. Sabbar, A.S, Chegenizadeh, A. and Nikraz, H. (2018), "Effect of slag and bentonite on shear strength parameters of sandy soil", Geomech. Eng., 15(1), 659-668. https://doi.org/10.12989/gae.2018.15.1.659.
  28. Simoni, A. and Houlsby, G. (2006), "The direct shear strength and dilatancy of sand-gravel mixtures", Geotech. Geological Eng., 24(3), 523-549. https://doi.org/10.1007/s10706-004-5832-6.
  29. Tang, C., Shi, B. and Zhao, L. (2010), "Interfacial shear strength of fiber reinforced soil", Geotext. Geomembranes, 28(1), 54-62. http://doi.org/10.1016/j.geotexmem.2009.10.001.
  30. Yazhini, S. and Ramakrishna, D. (2018), "Studies on bond and flexural strength of sisal fibre rope reinforced concrete", IJSEC, 8(3), 1- 40.
  31. Yetimoglu, T. and Salbas, O. (2003), "A study on shear strength of sands reinforced with randomly distributed discrete fibers", Geotext. Geomembranes, 21(2), 103-110. http://dx.doi.org/10.1016/S0266-1144(03)00003-7.
  32. Yoobanpot, N., Jamsawang, P., Krairan, K., Jongpradist, P. and Horpibulsuk, S. (2018). "Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment", Geomech. Eng., 15(4), 1005-1016. https://doi.org/10.12989/gae.2018.15.4.1005.