References
- Alade, I.O., Zhang, Y. and Xu, X. (2021), "Modeling and prediction of lattice parameters of binary spinel compounds (AM2X4) using support vector regression with Bayesian optimization", New J. Chem., 34. https://doi.org/10.1039/d1nj01523k
- Bai, X.D., Cheng, W.C., Ong, D.E.L. and Ge Li. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. http://doi.org/10.12989/gae.2021.25.1.059.
- Carriere, S.D., Chalikakis, K., Guy, S., Charles, D. and Christophe, E. (2013), "Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone", J. Appl. Geophys., 94, 31-41. https://doi.org/10.1016/j.jappgeo.2013.03.014.
- Guan, Z., Deng, T., Jiang, Y., Zhao, C. and Huang, H. (2014), "Probabilistic estimation of ground condition and construction cost for mountain tunnels", Tun. Undergr. Sp. Tech., 42, 175-183. https://doi.org/10.1016/j.tust.2014.02.014.
- Khishe, M., Mosavi, M.R. and Moridi, A. (2018), "Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation", Appl. Acoust., 137, 121-139. https://doi.org/10.1016/j.apacoust.2018.03.012.
- Khishe, M. and Mosavi, M.R. (2019), "Improved whale trainer for sonar datasets classification using neural network", Appl. Acoust., 154, 176-192. https://doi.org/10.1016/j.apacoust.2019.05.006.
- Khishe, M. and Mosavi, M.R. (2020). "Chimp optimization algorithm, Expert Systems with Applications", 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338.
- Luat, N.V., Lee, K. and Duc-Kien, T. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils.", Geomech. Eng., 20(5), http://doi.org/10.12989/gae.2020.20.5.385.
- Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021a), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns.", Geomech. Eng., 25(6), 439-454. http://doi.org/10.12989/gae.2021.25.6.439.
- Liu, L.L., Yang, C. and Wang, X.M. (2021b), "Landslide susceptibility assessment using feature selection-based machine learning models.", Geomech. Eng., 25(1), 1-16. http://doi.org/10.12989/gae.2021.25.1.001.
- Mahmoodzadeh, A. and Zare, S. (2016), "Probabilistic prediction of the expected ground conditions and construction time and costs in road tunnels", J. Rock Mech. Geotech. Eng., 8(5), 734-745. https://doi.org/10.1016/j.jrmge.2016.07.001.
- Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Rashid, T.A., Sherwani, A.F.H., Faraj, R.H. and Darwesh, A.M. (2019), "Updating ground conditions and time-cost scatter-gram in tunnels during excavation", Autom. Constr., 105, 102822. DOI: 10.1016/j.autcon.2019.04.017.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ibrahim, H.H., Hama-Ali, H.F. and Salim, S.G. (2021a), "Dynamic reduction of time and cost uncertainties in tunneling projects", Tun. Undergr. Sp. Tech., 109, 103774. https://doi.org/10.1016/j.tust.2020.103774.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Nejati, H.R., Noori, K.M.G., Ibrahim, H.H. and Hama Ali, H.F. (2021b), "Predicting construction time and cost of tunnels using Markov chain model considering opinions of experts", Tun. Undergr. Sp. Tech., 116, 104109. https://doi.org/10.1016/j.tust.2021.104109.
- Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Hama Ali, H.F., Al-Salihi, N.K. and Omer, R.M.D. (2020a), "Forecasting maximum surface settlement caused by urban tunneling", Autom. Constr., 120, 103375. https://doi.org/10.1016/j.autcon.2020.103375.
- Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Faraj, R.H., Omer, R.M.D. and Sherwani, A.F.H. (2020b), "Decision-making in tunneling using artificial intelligence tools", Tun. Undergr. Sp. Tech., 103, 103514. https://doi.org/10.1016/j.tust.2020.103514.
- Mahmoodzadeh, A., Mohammadi, M., Hama Ali, H.F., Abdulhamid, S.N., Ibrahim, H.H. and Noori, K.M.G. (2021c), "Dynamic prediction models of rock quality designation in tunneling projects", Transportation Geotech., 27, 100497. https://doi.org/10.1016/j.trgeo.2020.100497.
- Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Hama Ali, H.F., Abdullah, A.I. and Al-Salihi, N.K. (2021d), "Forecasting tunnel geology, construction time and costs using machine learning methods", Neural Comput. Appl., 33, 321-348. https://doi.org/10.1007/s00521-020-05006-2
- Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Abdulhamid, S.N., Hama Ali, H.F., Hasan, A.M., Khishe, M. and Mahmud, H. (2021e), "Machine learning forecasting models of disc cutters life of tunnel boring machine", Autom. Constr,, 128, 103779. https://doi.org/10.1016/j.autcon.2021.103779.
- Mahmoodzadeh, A., Mohammadi, M., Noori, K.M.G., Khishe, M., Ibrahim, H.H., Hama Ali, H.F. and Abdulhamid, S.N. (2021f), "Presenting the best prediction model of water inflow into drill and blast tunnels among several machine learning techniques", Autom. Constr,, 127, 103719. https://doi.org/10.1016/j.autcon.2021.103719.
- Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Noori, K.M.G., Abdulhamid, S.N. and Hama Ali, H.F. (2021g), "Forecasting sidewall displacement of underground caverns using machine learning techniques", Autom. Constr,, 123, 103530. https://doi.org/10.1016/j.autcon.2020.103530.
- Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Rashid, T.A., Aldalwie, A.H.M., Hama Ali, H.F. and Daraei, A. (2021h), "Tunnel geomechanical parameters prediction using Gaussian process regression", Mach. Learn. Appl., 3, 100020. https://doi.org/10.1016/j.mlwa.2021.100020.
- Min, S. and Einstein, H.H. (2016), "Resource scheduling and planning for tunneling with a new resource model of the Decision Aids for Tunneling (DAT)", Tun. Undergr. Sp. Tech., 51, 212-225. https://doi.org/10.1016/j.tust.2015.10.038.
- Sousa, R.L. and Einstein, H.H. (2012), "Risk analysis during tunnel construction using Bayesian Networks: Porto Metro case study", Tun. Undergr. Sp. Tech., 27(1), 86-100. https://doi.org/10.1016/j.tust.2011.07.003
- Saffari, A., Zahiri, S.H and Khishe, M. (2022). "Fuzzy grasshopper optimization algorithm: A hybrid technique for tuning the control parameters of GOA using fuzzy system for big data sonar classification", IJEEE, 18(1), 2131-2131. http://ijeee.iust.ac.ir/article-1-2131-en.html.
- Taghavi, M. and Khishe, M. (2019). "A Modified Grey Wolf Optimizer by Individual Best Memory and Penalty Factor for Sonar and Radar Dataset Classification", Iran J. Mar. Technol., 6(1), 120-130. http://ijmt.iranjournals.ir/article_35433.html.
- Vapnik, V.N. (1995), The nature of statistical learning theory. New York: Springer.
- Xiang, G., Yin, D., Cao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations.", Geomech. Eng., 25(5), 395-403. http://doi.org/10.12989/gae.2021.25.5.395.
- Zhang, Y. and Xu, X. (2021a), "Solid particle erosion rate predictions through LSBoost", Powder Technol., 388, 517-525. https://doi.org/10.1016/j.powtec.2021.04.072.
- Zhang, Y. and Xu, X (2021b), "Predictions of the total crack length in solidification cracking through LSBoost", Metal. Mater. Trans. A, 52, 985-1005. https://doi.org/10.1007/s11661-020-06130-3.
- Zhang, Y. and Xu, X. (2021c), "Predicting the material removal rate during electrical discharge diamond grinding using the Gaussian process regression: a comparison with the artificial neural network and response surface methodology", Int. J. Adv. Manuf. Technol., 113, 1527-1533. https://doi.org/10.1007/s00170-021-06701-7.
- Zhang, Y. and Xu, X. (2021d), "Lattice misfit predictions via the Gaussian process regression for ni-based single crystal superalloys", Met. Mater. Int., 27, 235-253. https://doi.org/10.1007/s12540-020-00883-7.
- Zhang, Y. and Xu, X. (2020), "Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids", New J. Chem., 47. https://doi.org/10.1039/d0nj03868g.