참고문헌
- Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74(1), 83-90. https://doi.org/10.12989/sem.2020.74.1.08.
- Abdulrazzaq, M.A. Fenjan, R.M Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. http://doi.org/10.12989/scs.2020.35.1.147.
- Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2). 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Ahmed, R.A., Moustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. http://doi.org/10.12989/sem.2020.76.3.413.
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Akbas, S.D. (2020a), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2020b), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. http://doi.org/10.12989/anr.2020.8.4.277.
- Akgun, G. and Kurtaran, H. (2019), "Large displacement transient analysis of FGM super-elliptic shells using GDQ method", Thin-Wall. Struct., 141, 133-152. https://doi.org/10.1016/j.tws.2019.03.049.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Baferani, H.A., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. http://doi.org/10.1016/j.compstruct.2011.01.020.
- Carrera, E., Brischetto, S. andRobaldo, A. (2008), "Variable Kinematic Model for the Analysis of Functionally Graded Material plates", AIAA J., 46(1), 194-203. http://doi.org/10.2514/1.32490.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. http://doi.org/10..1016/j.compositesb.2010.10.005.
- Chen, C.S., Hsu, C.Y. and Tzou, GJ. (2009), "Vibration and stability of functionally graded plates based on a higher-order deformation theory", J. Reinf. Plast. Compos., 28(10), 1215-1234. https://doi.org/10.1177/0731684408088884.
- Dehshahri, K., Nejad, M. Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Ebrahimi, T., Nejad, M.Z., Jahankohan, H. and Hadi, A. (2021), "Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels", Steel Compos. Struct., 38(2), 189-211. https://doi.org/10.12989/scs.2021.38.2.189.
- Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191. https://doi.org/10.1007/s00419-012-0645-1.
- Fares, M.E., Elmarghany, M.K. and Atta, D. (2009), "An efficient and simple refined theory for bending and vibration of functionally graded plates", Compos. Struct., 91(3), 296-305. https://doi.org/10.1016/j.compstruct.2009.05.008.
- Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020b), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nanocomposites", Adv. Nano Res., 9(3). 147-156. http://doi.org/10.12989/anr.2020.9.3.147.
- Fenjan, R.M., Faleh, N.M. and Ahmed R.A. (2020c), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. http://doi.org/10.12989/scs.2020.36.6.631.
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020a), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. http://doi.org/10.12989/anr.2020.8.4.283.
- Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B: Eng., 42(5), 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031.
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Analysis of composite plates by trigonometric shear deformation theory and multiquadrics", Comput. Struct., 83(27), 2225-2237. https://doi.org/10.1016/j.compstruc.2005.04.002.
- Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018a). "Nonlinear finite element analysis of transient behaviour of delaminated composite plate", J. Vib. Acoust., 140(2). https://doi.org/10.1115/1.4037848.
- Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017), "Nonlinear transient finite-element analysis of delaminated composite shallow shell panels", AIAA J., 55(5), 1734-1748. https://doi.org/10.2514/1.J055624.
- Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018b). "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. S0263822317325023 https://doi.org/10.1016/j.compstruct.2017.09.071.
- Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035.
- Hirwani, C.K. and Panda, S.K. (2019a), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Model., 65, 303-317. S0307904X18304037. https://doi.org/10.1016/j.apm.2018.08.014.
- Hirwani, C.K. and Panda, S.K. (2019b), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. with Comput., 1-14. https://doi.org/10.1007/s00366-019-00757-6.
- Hirwani, C.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L. and Buragohain, M.K. (2018c), "Flexural strength of delaminated composite plate - An experimental validation", Int. J. Damage Mech., 27(2), 296-329. 1056789516676515. https://doi.org/10.1177/1056789516676515.
- Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S. and De, A.K. (2018e), "Delamination effect on flexural responses of layered curved shallow shell panel-experimental and numerical analysis", Int. J. Comput. Method., 15(4), 1850027. https://doi.org/10.1142/S0219876218500275.
- Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017b). "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", J. Aerosp. Eng., 30(5), 04017045. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000756.
- Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018d), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8.
- Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
- Karakoti, A., Pandey, S. and Kar, V.R. (2021), "Dynamic responses analysis of P and S-FGM sandwich cylindrical shell panels using a new layerwise method", Struct. Eng. Mech., 80(4), 417-432. https://doi.org/10.12989/sem.2021.80.4.417.
- Karami, B. and Janghorban, M. (2019), "A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams", Steel Compos. Struct., 32(2), 213-223. https://doi.org/10.12989/scs.2019.32.2.213.
- Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
- Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2019), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. with Compu., 35 (2), 467-485. https://doi.org/10.1007/s00366-018-0609-3.
- Katariya, P.V., Mehar, K. and Panda, S.K. (2020), "Nonlinear dynamic responses of layered skew sandwich composite structure and experimental validation", Int. J. Nonlinear Mech., 125, 103527. https://doi.org/10.1016/j.ijnonlinmec.2020.103527.
- Katariya, P.V. and Panda, S.K. (2019a), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. with Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
- Katariya, P.V. and Panda, S.K. (2019b), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng, 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
- Liu, W., Liu, S., Fan, M., Tian, W., Wang, J. and Tahouneh, V. (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-303. https://doi.org/10.12989/scs.2020.35.2.295.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427
- Mansour, W and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., 41(3), 317-334. https://doi.org/10.12989/scs.2021.41.3.317.
- Mantari, J.L. and Guedes Soares, C. (2012), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct., 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.
- Mantari, J.L. and Guedes Soares, C. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B: Eng., 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036.
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
- Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/scs.2020.34.1.141.
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38. https://doi.org/10.1115/1.4010217
- Natarajan, S. and Manickam, G. (2012), "Bending and vibration of functionally graded material sandwich plates using an accurate theory", Finite Elem. Anal. Des., 57, 32-42. https://doi.org/10.1016/j.finel.2012.03.006.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. ttps://doi.org/10.1016/j.compositesb.2012.01.089.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B: Eng., 43(2), 711-725. ttps://doi.org/10.1016/j.compositesb.2011.08.009.
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.
- Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidiscip. Model. Mater. Struct., 14(2), 322-338. ttps://doi.org/10.1108/MMMS-08-2017-0082.
- Pandey, H.K., Agrawal, H., Panda, S.K., Hirwani, C.K., Katariya, P.V. and Dewangan, H.C. (2020), "Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite", Struct. Eng. Mech., 73 (6), 715-724. https://doi.org/10.12989/sem.2020.73.6.715.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: state-of-the-art", Trends Civil Eng. its Architect., 3(1) 336-340. ttps://doi.org/10.32474/TCEIA.2018.03.000151.
- Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosuedarstvennoe Izadatelstvo Literatim po Stroitelstvu i Arkhitekture, 1, 1-56.
- Patle, B.K., Hirwani, C.K., Panda, S.K., Katariya, P.V., Dewangan, H.C. and Sharma, N. (2020), "Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties", Steel Compos. Struct., 35(6), 753-763. https://doi.org/10.12989/scs.2020.35.6.753.
- Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 2(2), 141-152. ttps://doi.org/10.12989/cme.2020.2.2.141.
- Qian, L.F. and Batra, R.C. (2005), "Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin Method", Comput. Mech., 35(3), 214-226. https://doi.org/10.1007/s00466-004-0617-6.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Rashidpour, P., Ghadiri, M. and Zajkani, A. (2021), "The response of viscoelastic composite laminated microplate under low-velocity impact based on nonlocal strain gradient theory for different boundary conditions", Steel Compos. Struct., 41(3), 335-351. https://doi.org/10.12989/scs.2021.41.3.335.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Reddy, J.N. (2011), "A general nonlinear third-order theory of functionally graded plates", Int. J. Aerosp. Lightweight Struct., 1(1), 1-21. https://doi.org/10.3850/S201042861100002X.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), 69-72.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225.
- Sahoo, S.S., Panda, S.K., Mahapatra, T.R. and Hirwani, C.K. (2019), "Numerical analysis of transient responses of delaminated layered structure using different mid-plane theories and experimental validation", Iran J. Sci. Technol. T. Mech. Eng., 43,41-56. https://doi.org/10.1007/s40997-017-0111-3.
- Selmi, A. (2020), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/sss.2020.25.6.669.
- Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
- Shakouri, M. (2021), "Analytical solution for stability analysis of joined cross-ply thin laminated conical shells under axial compression", Compos. Mater. Eng., 3(2), 117-134. https://doi.org/10.12989/cme.2021.3.2.117.
- Singh, V.K., Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mehar, K. (2019), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(5), 095440621877436-. doi:10.1177/0954406218774362.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
- Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B: Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
- Thai, H.T. and Choi, D.H. (2014), "Zeroth-order shear deformation theory for functionally graded plates resting on elastic foundation", Int. J. Mech. Sci., 78, 35-43. ttps://doi.org/10.1016/j.ijmecsci.2013.09.020.
- Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016.
- Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
- Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9
- Wang, H., Yan, W. and Li, C. (2020), "Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers", Struct. Eng. Mech., 76(5), 599-611. https://doi.org/10.12989/SEM.2020.76.5.599.
- Winkler, E. (1867), "Die lehre von der elasticitaet und festigkeit", Prague: Prag Dominicus; 1867.
- Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022.
- Xiang, S. and Kang, G.W. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech.-A/Solids, 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005.
- Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. https://doi.org/10.12989/SCS.2020.37.5.551.
- Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026.