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KATOK-HASSELBLATT-KINEMATIC EXPANSIVE FLOWS

Hien Minh Huynh

Abstract. In this paper we introduce a new notion of expansive flows,

which is the combination of expansivity in the sense of Katok and Hassel-

blatt and kinematic expansivity, named KH-kinematic expansivity. We
present new properties of several variations of expansivity. A new hier-

archy of expansive flows is given.

1. Introduction

The concept of expansivity plays an important role in the study of discrete
and continuous dynamical systems. Expansive flows have been studying for
almost a half century. In 1972, Bowen and Walters [4] gave a definition of ex-
pansivity for flows that is called ‘expansive in the sense of Bowen and Walters’
(or shortly ‘BW-expansive’). Since then, there have been several variations
of expansive flows introduced, depending on the kind of reparametrizations.
BW-expansivity is so-called C-expansivity ([11]) since the reparametrizations
are continuous functions in the set denoted by C. K-expansivity means that
reparametrizations are in a set K consisting of increasing homeomorphisms
([12]). The definition of K-expansive flow is the same to that of expansive
flows given by Flinn in his Ph.D thesis [6]. Bowen and Walters [4] first showed
that for flows without fixed points, C-expansivity and K-expansivity are equiv-
alent. Then Oka [13] proved that in general (i.e., with fixed points presented),
the definitions of C-expansive and K-expansive flows are equivalent. The class
of C-expansive flows includes Anosov flows and suspensions of expansive home-
omorphisms. In 1984, Komuro [12] introduced the notion of K∗-expansive flows
to study the geometric Lorenz attractor, which is not K-expansive. Then Oka
[13] again showed that in the case of fixed-point-free flows, K-expansivity is
equivalent to K∗-expansivity. In this paper, we prove this property for flows
with open sets of fixed points.

In 1984, Gura [7] introduced the term ‘separating’ for flows in order to
study horocycle flows. The author showed that the horocycle flow on compact
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surfaces with negative curvature is separating together with its time changes
(so-called strong separating). Recently, Huynh [9] proved that the horocycle
flow on compact surfaces of constant negative curvature is strong kinematic,
which is stronger than being strong separating. In 2016, a collection of new
notions of expansive flows was presented by Artigue [2], including geometric
expansivity, kinematic expansivity, geometric separation, strong kinematic ex-
pansivity, strong separation, . . .. A hierarchy of expansive flows is given with
many counterexamples to analyse the relations of expansive properties.

Back in 1995, in a well-known book by Katok and Hasselblatt [10], the
authors discovered a new definition of expansive flows by considering reparam-
eterization in a particular way; this expansivity is later called ‘KH-expansivity’.
Artigue [3] then showed that a flow is KH-expansive if and only if it is separat-
ing and the set of fixed points is open. Huynh [8] proved that the horocycle flow
on compact surfaces of constant negative curvature is KH-expansive. Roughly
speaking, a flow is called KH-expansive if the orbit of a point and the orbit of
another point, which is reparameterizated, are close enough forever, then these
points must be in the same orbit. It is natural to require these points belong to
an orbit segment with small time and this motivates to consider a new variation
of expansivity. In this paper we introduce a new concept of expansive flows,
which is the combination of KH-expansivity and kinematic expansivity, named
Katok-Hasselblatt-kinematic expansivity or KH-kinematic expansivity for short.
The class of KH-kinematic expansive flows consists of kinematic expansive flows
with open sets of fixed points but does not admit BW-expansivity. One example
of KH-kinematic expansive flows is the horocycle flow on compact surfaces with
constant negative curvature. Since KH-expansivity and KH-kinematic expan-
sivity are not invariant properties under time change of flows, it is necessary to
consider the notions of strong KH-expansivity and strong KH-kinematic expan-
sivity. Hierarchy of expansive flows and counterexamples are given to analyse
the relationships of the classes of expansive and separating flows1. This may
be seen as a supplement of hierarchy of expansive flows provided by Artigue
[2]. We also show that if the set of fixed points is open, then C-expansivity,
K-expansivity and K∗-expansivity are equivalent (Theorem 3.8).

The paper is organized as follows. In Section 2, we present some impor-
tant results of fixed points sets of flows which will be used in this paper. A
main result of this section is that any suspension flow has no fixed points. Sec-
tion 3 defines and states basic properties of expansive and separating flows in
the versions of C-expansive, K-expansive, K∗-expansive, geometric expansive,
kinematic expansive, strong kinematic expansive, KH-expansive, C-separating,
geometric separating, strong separating and separating flows. We show that a
flow with open fixed points set is K-expansive if and only if it is K∗-expansive.
In Section 4 we introduce the definition and provide equivalent properties
of KH-kinematic expansivity. Strong KH-kinematic expansivity, KH-positive

1Expansive and separating flows are sometimes called in common expansive flows.
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kinematic expansivity are also discovered. Finally, we provide a hierarchy of
expansive flows with counterexamples to analyse relations of concepts about
expansive and separating flows.

Throughout the present paper, we denote by C the set of continuous func-
tions s : R→ R with s(0) = 0 and by K the set of increasing homeomorphisms
in C. We always assume that φ : R ×X → X is a continuous flow on a given
compact metric space (X, d).

2. Fixed points of flows

The fixed points set of a flow plays an important role in forming property
of the flow. This section is devoted to presenting some important properties
which will be used in the next sections.

2.1. Fixed points and periodic points

Definition 2.1. Let φ : X → X be a flow.
(i) A point x ∈ X is called a fixed point of φ if φt(x) = x for all t ∈ R. The

set of fixed points of φ is denoted by fix(φ).
(ii) A point x ∈ X is called a periodic point of φ if there exists T > 0 such

that φT (x) = x and φt(x) 6= x for some t ∈ R. Such a T is called a period of x.

A fixed point is so-called a singular point. A point which is not a singular
point is called a regular point.

Example 2.1. Let us consider a flow φ on R defined by φt(x) = xet for all
t, x ∈ R. The point 0 is the unique fixed point of φ.

Proposition 2.2. Let φ be a continuous flow on a compact metric space (X, d).
If fix(φ) is open, then φ does not have periodic points with arbitrarily small
periods.

Proof. Suppose in contrary that φ has arbitrarily small periods. Let xn ∈ X̃ =

X \fix(φ) and tn → 0+ be such that φtn(xn) = xn for n ∈ N. By hypothesis, X̃

is compact and we may assume that xn → x0 in X̃ as n→∞. We claim that
x0 is a fixed point. For, fix t ∈ R. If there are infinitely many n ∈ N such that
t = jntn for some jn ∈ Z, then φt(xn) = φjntn(xn) = φtn(xn) = xn. Passing
to the limit n → ∞ along a subsequence, it follows that φt(x0) = x0. Hence
it is no loss of generality to assume that t 6= jtn for all n ∈ N and j ∈ Z. For
each n ∈ N, there exists a unique jn ∈ Z such that jn − 1 < t/tn < jn. Then
0 < jntn − t < tn, and thus jntn → t as n → ∞, owing to tn → 0 as n → ∞.
As a result, φjntn(xn) = φtn(xn) = xn yields φt(x0) = x0 in the limit n→∞.

We deduce that x0 ∈ X̃ is a fixed point, which is impossible. �

Remark 2.3. Note that the converse of the above lemma is not true. As we will
see in Proposition 3.17 below, a separating flow does not have periodic points
with arbitrarily small periods, but the set of fixed points may not be open; see
Example 4.16.
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The proof of Proposition 2.2 has shown the following property.

Corollary 2.4. If a continuous flow on a compact metric space has periodic
orbits of arbitrarily small periods, then the flow must have a fixed point.

The following result was rigorously proved in [3, Lemma 2.1].

Lemma 2.5. The following assertions are equivalent for a continuous flow φ
on a compact metric space.

(i) fix(φ) is an open set.
(ii) There is T∗ > 0 such that for all T ∈ (0, T∗) there is ξ > 0 such that

d(φT (x), x) > ξ for all x /∈ fix(φ).

All classes of expansive flows we are going to present have finitely many fixed
points. The next result comes from the theory of general topology.

Lemma 2.6. Let (X, d) be a metric space and let A ⊂ X be a finite set. Then
A is open if and only if each point in A is an isolated point of X.

Proof. For ε > 0 and x ∈ X, denote by Bε(x) the open ball of radius ε centered
at x. Let A ⊂ X be finite. Define ρA = min{d(x, y), x, y ∈ A, x 6= y} > 0.
Suppose that A is open, then for any x ∈ A there is ε > 0 such that Bε(x) ⊂ A.
If we take 0 < δ < min{ρA, ε}, then Bδ(x) = {x} implies that x is an isolated
point of X. Conversely, if any x ∈ A is an isolated point of X, then there exists
Bε(x) = {x} ⊂ A shows that A is open. The lemma is proved. �

2.2. Fixed points of suspension flows

Let σ : X → X be a homeomorphism and f : X → [0,∞) a continuous
function. Set

Xf = {(x, s) : 0 ≤ s < f(x), x ∈ X} ⊂ X × [0,∞).

Define a new space X(σ, f) = Xf/ ∼, where ∼ is the identification (x, f(x)) ∼
(σ(x), 0). A metric on X(σ, f) introduced by Bowen and Walters in [4] makes
X(σ, f) a compact metric space.

(x, f(x))

(x, 0)(σ(x),0)

(σ(x), f(σ(x)))

(x, t)

Figure 1. Suspension flow
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Definition 2.2. The suspension of σ under f is the flow susσ,ft : X(σ, f) →
X(σ, f) defined by

susσ,ft (x, s) =
(
σk(x), t+ s±

k−1∑
i=1

f(σi(x))
)
,

where k is the unique number satisfying 0 ≤ t+s±
∑k−1
i=0 f(σi(x)) < f(σk(x));

see Figure 1 for an illustration.

Proposition 2.7. Any suspension flow has no fixed points.

Proof. By contradiction suppose (x, s) ∈ X(σ, f) is a fixed point of susσ,f .

Then susσ,ft (x, s) = (x, s) implies that

(2.1) t = ±(f(x) + f(σ(x)) + · · ·+ f(σk−1(x))).

This means that for any t ∈ R, there exists k ∈ Z satisfying (2.1). But the set

{f(x) + f(σ(x)) + · · ·+ f(σk−1(x)), k ∈ Z}
is countable, which is impossible. �

3. Varieties of expansivity

In this section we recall the definitions of separating and expansive home-
omorphisms and flows and present properties of several varieties of expansive
flows.

3.1. Separating and expansive homeomorphisms

Definition 3.1. Let σ : X → X be a homeomorphism.

(i) σ is called separating if there exists δ > 0 such that if x, y ∈ X and
d(σn(x), σn(y)) < δ, then x = σk(y) for some k ∈ Z.

(ii) σ is called expansive if there exists δ > 0 such that if x, y ∈ X and
d(σn(x), σn(y)) < δ, then x = y.

It is clear that an expansive homeomorphism is separating. Next we intro-
duce a homeomorphism which is separating but not expansive. Recall [2, Ex-
ample 2.24] with an addition in order to σ be well-defined.

Example 3.1. Consider a closed subset X of the sphere R2 ∪∞:

X = {∞} ∪ {(p, 0) : p ∈ Z} ∪ {(p,±1/q) : p ∈ Z, q ∈ Z+, |p| ≤ q}.
Define a homeomorphism σ : X → X by σ(∞) = ∞, σ(p, 0) = (p + 1, 0),
σ(p,± 1

q ) = (p + 1,± 1
q ) if p < q, σ(q,± 1

q ) = (−q,∓ 1
q ), σ(−q,± 1

q ) = (−q +

1,± 1
q ). A short calculation shows that for all 0 < δ < 1, only x = (0, 1q ) and

y = (0,− 1
q ) with p > 2/δ satisfy

d(σn(x), σn(y)) =
2

q
< δ for all n ∈ Z.
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Furthermore, σ2q+1(0, 1q ) = (0,− 1
q ) implies x and y are in the same orbit (see

Figure 2) and thus σ is separating. However, due to x 6= y, it follows that σ is
not expansive.

(0, 1
q
)

(0,− 1
q
)

Figure 2. (0, 1/q) and (0,−1/q) are in the same orbit

Example 3.2 (Shift map). Consider X = {0, 1}Z = {(xn)n∈Z : xn ∈ {0, 1}}
with metric d(x, y) =

∑∞
n=−∞

|xn−yn|
2|n|

for x = (xn), y = (yn) ∈ X. (X, d)
is a compact metric space and the shift map σ : X → X, (σ(x))n = xn+1

is a homeomorphism. If x 6= y, then xn 6= yn for some n ∈ Z implies
d(σn(x), σn(y))) ≥ 1/2 and thus σ is expansive.

3.2. C-expansive and K-expansive flows

Definition 3.2 ([4, 12]). Let (X, d) be a compact metric space and let φ :
R×X → X be a continuous flow.

(i) φ is called C-expansive2 if for each ε > 0, there exists δ > 0 such that
if x, y ∈ X, s ∈ C and

d(φt(x), φs(t)(y)) < δ for all t ∈ R,
then y = φτ (x) for some τ ∈ (−ε, ε).

(ii) φ is called K-expansive if for each ε > 0, there exists δ > 0 such that
if x, y ∈ X, s ∈ K and

d(φt(x), φs(t)(y)) < δ for all t ∈ R,
then y = φτ (x) for some τ ∈ (−ε, ε).

Such a δ is called an expansive constant for ε.

Example 3.3. (a) Anosov flows are C-expansive (see [6, Appendix]).
(b) Let Γ be a discrete subgroup of PSL(2,R) = SL(2,R)/{±E2}, where

SL(2,R) denotes the set of real matrices 2 × 2 with unit determinant and E2

denotes the unit matrix. Assume that the space X = Γ\PSL(2,R) is compact.
Define a flow (ϕt)t∈R in X by ϕt(Γg) = Γgat for all t ∈ R, where at = {±At},
At =

(
et/2 0
0 e−t/2

)
. Then ϕ is C-expansive; see [8, Theorem 3.2].

2In [4], it is simply called expansive. In some literatures, it is called BW-expansive.
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(c) The suspension of an expansive homeomorphism under a continuous
function is a C-expansive flow; see [4, Theorem 6].

It was shown in [4] that every fixed point of a C-expansive flow is iso-
lated. Therefore, the set of fixed points is finite and open. The authors also
proved that in the case of fix-point-free flows, C-expansivity is equivalent to
K-expansivity (Theorem 2). Then Oka [13] proved that it is also true for flows
with fixed points.

Theorem 3.4 ([13]). A flow is C-expansive if and only if it is K-expansive.

A key point in the proof of the previous theorem is that each fixed point of
a K-expansive flow is isolated. Next we provide a shorter proof by improving
the one in [13].

Proposition 3.5. Every fixed point of a K-expansive flow is an isolated point
of the space.

Proof. Let φ;X → X be a K-expansive flow and δ > 0 an expansive constant
for ε = 1. Since X is compact, φ : [−2, 2] ×X → X is uniformly continuous.
There exists ρ > 0 such that if x, y ∈ X, d(x, y) < ρ, then d(φt(x), φt(y)) < δ/2
for all t ∈ [−2, 2]. Fix x0 ∈ fix(φ). We show that Bρ(x0) = {x0}, which
implies that x0 is an isolated point in X. Suppose in contrary that there exists
y0 ∈ Bδ(x0) \ {x0}. If d(φt(y0), φt(x0)) < δ for all t ∈ R, then y0 = x0.
Therefore

(3.1) d(φt0(y0), x0) ≥ δ for some t0 ∈ R.
We verify that y0 is a periodic point with a period less than 2. Let y1 = φ1(y0)
and define

s(t) =


t− 1 if |t| ≥ 2,
t
2 if 0 ≤ t ≤ 2,
3t
2 if − 2 ≤ t ≤ 0.

Then s : R → R is an increasing homeomorphism on R with s(0) = 0. Owing
to d(y0, x0) < ρ, we have d(φt(y0), φt(x0)) < δ/2 for all |t| ≤ 2. Hence,

d(φt(y0), φs(t)(y1)) = d(φt(y0), φs(t)+η(y0))

≤ d(φt(y0), x0) + d(x0, φs(t)+η(y0)) < δ for all |t| ≤ 2.

In conjunction with

d(φt(y0), φs(t)(y1)) = d(φt(y0), φt(y0)) = 0 for |t| ≥ 2,

we obtain

d(φt(y0), φs(t)(y1)) < δ for all t ∈ R.
By hypothesis, y1 = φτ (y0) for some |τ | < 1 and thus φ1−τ (y0) = y0. This
means that y0 is a periodic orbit of φ with period 0 < 1 − τ < 2. Using
d(φt(y0), x0) < δ0 for all t ∈ [−2, 2], we have d(φt(y0), x0) < δ0 for all t ∈ R,
which contradicts (3.1). The lemma is proved. �
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3.3. K∗-expansive and geometric expansive flows

Let φ : X → X be a continuous flow. We recall another distance in X
introduced by Artigue in [1]:

dφ(x, y)=

{
inf{diam (φ[a,b](z)) : z∈X, [a, b]⊂R, x, y∈φ[a,b](z)} if y ∈ φR(x),

diam (X) if y /∈ φR(x).

Definition 3.3 ([2, 12]). Let φ : X → X be a continuous flow.

(i) φ is called geometric expansive3 if for each ε > 0, there exists δ > 0
such that if x, y ∈ X, s ∈ K satisfying

d(φt(x), φs(t)(y)) < δ for all t ∈ R,
then dφ(x, y) < ε.

(ii) φ is called K∗-expansive if for each ε > 0, there exists δ > 0 such that
if x, y ∈ X, s ∈ K satisfying

d(φt(x), φs(t)(y)) < δ for all t ∈ R,
then φs(t0)(y) = φt0+τ (x) for some t0 ∈ R and τ ∈ (−ε, ε).

Theorem 3.6. The flow φ is geometric expansive if and only if it is K∗-
expansive.

Proof. See [1, Theorem 1.3] for a proof. �

Example 3.7 (Lorenz attractor, [12]). (a) The Lorenz attractor, defined as
the inverse limit of a semi-flow on a 2-dimensional branched manifold, is K∗-
expansive (equivalently, geometric expansive).

(b) The Lorenz attractor is not K-expansive because it has two fixed points
which are non-isolated.

As seen in the previous example, a K∗-expansive flow may have non-isolated
fixed points. In the case that each fixed point is an isolated point, K-expansivity
and K∗-expansivity are equivalent:

Theorem 3.8. Suppose that fix(φ) is open. Then φ is K-expansive if and only
if φ is K∗-expansive.

To prove this theorem, we need a weaker result.

Lemma 3.9 ([13]). A fixed-point-free flow is K-expansive if and only if it is
K∗-expansive.

Proof of Theorem 3.8. We only need to prove the reverse. Let X̃ = X \ fix(φ)

and ψ = φ|X̃ , i.e., ψ : R × X̃ → X̃, ψt(x) = φt(x) for all (t, x) ∈ R × X̃.

Suppose that φ is K∗-expansive on X. Then ψ is K∗-expansive on X̃. Since

ψ has no fixed points in X̃, it follows that ψ is K-expansive on X̃, owing to
Lemma 3.9. For each ε > 0, let δ1 be an expansive constant for ε of ψ. Due

3In [1], it is simply called expansive flow.
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to the fact that fix(φ) is open and finite, each fixed point of φ is isolated; see
Lemma 2.6. Let δ2 > 0 be such that Bδ2(x) = x for all x ∈ fix(φ). We show
that δ = min{δ1, δ2} is an expansive constant for ε of φ. Let x, y ∈ X and
s ∈ K be such that

d(φt(x), φs(t)(y)) < δ for all t ∈ R.

If x, y ∈ X̃, then y = ψτ (x) = φτ (x) for some τ ∈ (−ε, ε) since ψ is expansive

on X̃. If either x ∈ fix(φ) or y ∈ fix(φ), then d(x, y) < δ ≤ δ2 implies that
x = y. The proof is complete. �

3.4. Kinematic expansive flows

Definition 3.4 ([2]). A continuous flow φ on X is called kinematic expansive4

if for each ε > 0, there exists δ > 0 such that if x, y ∈ X,

d(φt(x), φt(y)) < δ for all t ∈ R,

then y = φτ (x) for some τ ∈ (−ε, ε).

Here is an equivalent statement of kinematic expansivity.

Proposition 3.10 ([2]). A flow φ is kinematic expansive if and only if for all
ε > 0 there exists δ > 0 such that if d(φt(x), φt(y)) < δ for all t ∈ R, then
dφ(x, y) < δ.

Recall that the orbit of flow φ through x ∈ X is defined by φR(x) =
{φt(x), t ∈ R}.

Definition 3.5 ([6]). Let X be a metric space and let φ, ψ : R ×X → X be
continuous flows. We say that φ is a time change of ψ if for every x ∈ X the
orbits φR(x), ψR(x) and their orientations coincide.

A kinematic expansive flow may be not a time change invariant. The fol-
lowing definition is natural.

Definition 3.6 ([2]). A flow is called strong kinematic expansive5 if any time
change of its is kinematic expansive.

Example 3.11 ([2]). Consider flow φ generated by the differential equation
(ẋ1, ẋ2) = 1√

x2
1+x

2
2

(−x2, x1) on the annulus A = {(x1, x2) ∈ R2 : 1 ≤ x21 +

x22 ≤ 4}. For x = (x1, x2) ∈ A, let α =
√
x21 + x22 and t0 ∈ [0, 2απ) satisfy

(α cos t0α , α sin t0
α ) = (x1, x2). Define φt(x) = (α cos t+t0α , α sin t+t0

α ), t ∈ R.

The orbits of φ are circles {α(cos t
α , sin

t
α ), t ∈ R} with 1 ≤ α ≤ 2; see Figure

3. If x, y ∈ A are not in the same orbit of φ, then for all δ > 0, there exists
τ ∈ R such that d(φτ (x), φτ (y)) > δ since φR(x) and φR(y) are not the same

4It is called {id}-expansive in [11].
5It is equivalent to the notion of weakly expansivity in [6].
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Figure 3. Periodic orbits in the annulus

periods. The kinematic expansivity of φ follows from the continuity of function
sin−1.

Let us consider a time change ψ of φ defined as follows. For x = (x1, x2) ∈ A,

choose t0 ∈ [0, 2φ) such that (x1, x2) = (α cos t0, α sin t0), where α =
√
x21 + x22.

Set ψt(x) = α(cos(t + t0), sin(t + t0)), t ∈ R. Note that ψ is a time change of
φ due to the fact that φR(x) = ψR(x) for all x ∈ A. It is clear that ψ is not
separating (and hence φ is not strong separating, see Definition 3.7). Therefore,
φ is kinematic expansive but not strong kinematic expansive.

Remark 3.12. It is worth mentioning that strong kinematic expansivity is more
general than geometric expansivity. This implies that fixed points of a (strong)
kinematic expansive flow may not be isolated; see Example 3.7. Hence the last
statement in Remark 1.8.6 in [5] which claims that fixed points of a kinematic
expansive flow are isolated is not true; see Example 4.16 for another counterex-
ample. Kinematic expansive flows with isolated fixed points are considered in
Section 4 with the name ‘KH-kinematic expansive flows’.

According to the proof of Theorem 6 in [4], if f : X → [0,∞), f(x) = 1 for
all x ∈ R, then it only needs the kinematic expansivity of susσ,f to obtain the
expansivity of homeomorphism σ. Similarly, if f : X → [0,∞) is constant, we
have the following result.

Theorem 3.13. Let σ be a homeomorphism of a compact metric space X, and
let f : X → [0,∞) be constant. Then the following assertions are equivalent.

(i) The homeomorphism σ is expansive.
(ii) The suspension susσ,f is kinematic expansive.
(iii) The suspension susσ,f is C-expansive.

Remark 3.14. From the previous theorem, it follows that if a flow is the sus-
pension of a homeomorphism under a constant function, then C-expansive,
K∗-expansive, strong kinematic expansive, and kinematic expansive properties
are equivalent.
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3.5. C-separating, geometric separating and separating flows

Definition 3.7 ([2, 7]). Let φ : X → X be a continuous flow.

(i) φ is called C-separating if there exists δ > 0 such that if x, y ∈ X,
s ∈ C and

d(φt(x), φs(t)(y)) < δ for all t ∈ R,
then y = φτ (x) for some τ ∈ R.

(ii) φ is called geometric separating if there exists δ > 0 such that if x, y ∈
X, s ∈ K and

d(φt(x), φs(t)(y)) < δ for all t ∈ R,
then y = φτ (x) for some τ ∈ R.

(iii) φ is called separating if there exists δ > 0 such that if x, y ∈ X,

(3.2) d(φt(x), φt(y)) < δ for all t ∈ R,
then y = φτ (x) for some τ ∈ R.

(iv) φ is called strong separating if every time change is separating.

Such a δ in (iii) is called a separating constant of φ.

It is easy to see that

C-separation ⇒ geometric separation⇒ strong separation ⇒ separation.

Remark 3.15. (i) According to Remark 2.17 in [2], if φ is separating, then
every fixed point p of φ is dynamically isolated, i.e., there is r > 0 such that if
d(φt(x), p) < r for all t ∈ R, then x = p. Therefore fix(φ) is finite.

(ii) Like C-expansive flows, each fixed point of a C-separating flow is an
isolated point of the space, whereas a fixed point of a geometric separating
flow may not be isolated. One example is the Lorenz attractor (see [12]), which
is geometric separating but the fixed points are non-isolated. Therefore, the
Lorenz attractor is not C-separating and fixed points of a (strong) separating
flow may not be isolated.

(iii) It is stated in Lemma 1.8.5 in [5] that fixed points of a separating flow
are isolated. From (ii), it follows that the statement is not true. For another
counterexample, see Example 4.16. Separating flows with isolated fixed points
are KH-expansive flows (see Theorem 3.20).

Theorem 3.16. If fix(φ) is open, then φ is C-separating if and only if it is
geometric separating.

Proof. The proof is similar to that of Theorem 3.8. �

Although the fixed points set of a separating flow may be non-open, the
property in Proposition 2.2 still holds.

Proposition 3.17. A separating flow does not have periodic points with arbi-
trarily small periods.
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Proof. See Lemma 1.8.5 in [5] for a proof, using the fact from the proof of
Proposition 2.2 that if periodic points (xn) with periods (tn) and xn → x0,
tn → 0+ as n→∞, then x0 ∈ fix(φ). �

Remark 3.18. Analogous to Theorem 3.13, in the case that a flow φ is the sus-
pension of a homeomorphism under a constant time function, if φ is separating,
then it is C-separating. This holds if and only if the base homeomorphism is
separating.

3.6. KH-expansive flows

In [10] Katok and Hasselblatt introduced a definition of expansive flows,
which is called KH-expansivity.

Definition 3.8. Let (X, d) be a compact space. A continuous flow φt : X → X
is called KH-expansive if there exists δ > 0 such that if x, y ∈ X, s ∈ C such
that

max{d(φt(x), φs(t)(x)), d(φt(x), φs(t)(y))} < δ for all t ∈ R,
then y = φτ (x) for some τ ∈ R. Such a δ is called a separating constant of φ.

It is obvious that C-expansivity implies KH-expansivity.

Proposition 3.19. If φ is KH-expansive on X, then each fixed point of φ is
an isolated point of X. Therefore, fix(φ) is open and finite.

Proof. Fix x ∈ fix(φ) and let δ > 0 be a separating constant of φ. For y ∈
Bδ(x), putting s(t) = 0 for all t ∈ R, we have d(φt(x), φs(t)(x)) = d(x, x) = 0
and d(φt(x), φs(t)(y)) = d(x, y) < δ for all t ∈ R. This yields y = φτ (x) = x for
some τ ∈ R. Consequently, Bδ(x) = {x} and thus x is an isolated point of X.
For the latter, suppose that (xn) ∈ fix(φ) and xn 6= xm for m 6= n. Since X is
compact, we may assume that xn → x as n → ∞ for some x ∈ X. Owing to
the continuity of φ, φt(xn)→ φt(x) as n→∞ for all t ∈ R. Using φt(xn) = xn
for all n ≥ 1 and all t ∈ R, we obtain φt(x) = x for all t ∈ R, i.e., x ∈ fix(φ) is
not an isolated point of X, which contracts the former. �

Theorem 3.20. The following assertions are equivalent.

(i) φ is KH-expansive.
(ii) φ is separating and fix(φ) is open.
(iii) φ is separating and each fixed point of φ is an isolated point.

Proof. (i)⇔(ii): This is [3, Theorem 2.9]. (ii)⇔(iii): This follows from Lemma
2.6 and the fact that fix(φ) is finite. �

Remark 3.21. A C-expansive flow has finitely many periodic orbits with periods
less than a given number. In general a KH-expansive flow does not have this
property. Consider the flow in Example 4.9, which has uncountable periodic
orbits with periods smaller than 4π. However, as separating flows, a KH-
expansive flow does not have periodic orbits with arbitrarily small periods; see
Proposition 3.17.
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4. KH-kinematic expansive flows

In this section we introduce a new notion of expansive flows, which we call
‘KH-kinematic expansivity’. Some equivalent properties are presented for this
expansivity. Since KH-kinematic expansivity is not an invariant property un-
der time change of flows, the concept ‘strong KH-kinematic expansivity’ is
needed. Hierarchy of expansive flows is given with counterexamples to analyse
the relations of expansive properties.

4.1. KH-kinematic expansive flows

The following definition is natural.

Definition 4.1. Let (X, d) be a compact space. A continuous flow φ : R×X →
X is called KH-kinematic expansive if for every ε > 0, there exists δ > 0 such
that if x, y ∈ X, s ∈ C satisfying

max{d(φt(x), φs(t)(x)), d(φt(x), φs(t)(y))} < δ for all t ∈ R,
then y = φτ (x) for some τ ∈ (−ε, ε).

It is clear that a C-expansive flow is KH-kinematic expansive.

Theorem 4.1. Let φ = (φt)t∈R be a continuous flow on X. Then the following
assertions are equivalent.

(i) φ is KH-kinematic expansive.
(ii) φ is KH-expansive and kinematic expansive.
(iii) φ is kinematic expansive and fix(φ) is open.
(iv) φ is kinematic expansive and each x ∈ fix(φ) is an isolated point of X.

Proof. (i)⇒(ii): Suppose that φ is KH-kinematic. The former of (ii) is clear.
For the latter, take s(t) = t for all t ∈ R in Definition 4.1 to obtain the
kinematic expansivity.

(ii)⇒(iii): This follows from Proposition 3.19.
(iii)⇔(iv): This is a consequence of Lemma 2.6, noting that fix(φ) is finite

if φ is kinematic expansive.
In order to show (iii)⇒(i), we need the following lemma. The next result

states that if a regular orbit, which is reparameterized, is close to the original
one in the whole time, then the reparameterization must be close to the identity.

Lemma 4.2. Suppose that fix(φ) is open. For each ε > 0, there exists δ > 0
such that if x ∈ X \fix(φ), s ∈ C satisfying d(φt(x), φs(t)(x)) < δ for all t ∈ R,
then |s(t)− t| < ε for all t ∈ R.

Proof. Let T∗ > 0 be in Lemma 2.5 and let X̃ = X\fix(φ). Suppose in contrary

that there is 0 < ε < T∗ such that for δn → 0, there are xn ∈ X̃, sn ∈ C,

(4.1) d(φt(xn), φsn(t)(xn)) < δn for all t ∈ R
but

(4.2) |sn(tn)− tn| > ε for some tn ∈ R.
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Fix n ∈ N and let hn(t) = sn(t)−t for all t ∈ R. Then hn : R→ R is continuous
and hn(0) = 0. It follows from (4.2) that there exists un ∈ (−|tn|, |tn|) such
that |hn(un)| = ε. There exists a subsequence of un, which is not renumerated,
such that hn(un) = ε for all n or hn(un) = −ε for all n. Without loss of
generality, we may assume that hn(un) = ε for all n. Let an = φun

(xn) and

bn = φsn(un)(xn). Since X̃ is compact, we may assume that an → a ∈ X̃. As
a consequence, bn = φsn(un)−un

(an) = φε(an)→ φε(a). Furthermore, by (4.1),

d(φun(xn), φsn(un)(xn)) < δn

yields bn → x and thus φε(a) = a contracting the property of T∗. The lemma
is proved. �

Now we are in a position to show (iii)⇒(i). Suppose that φ is kinematic
expansive and fix(φ) is open. Choose δ1 > 0 such that Bδ1(x) = {x} for all
x ∈ fix(φ). For all ε > 0, let δ2 = δ2(ε) > 0 be an expansive constant for ε,
δ3 = δ3(ε) as in Lemma 4.2 and set δ = min{δ1, δ2, δ3}/2. Suppose x, y ∈ X,
s : R→ R is continuous, s(0) = 0 such that

d(φt(x), φs(t)(x)) < δ for all t ∈ R,(4.3)

d(φt(x), φs(t)(y)) < δ for all t ∈ R.(4.4)

If x ∈ fix(φ), then y = x due to (4.4). If x /∈ fix(φ), then it follows from (4.3)
and Lemma 4.2 that

|s(t)− t| < ε for all t ∈ R

and thus s : R→ R is a surjection. Furthermore, from (4.3) and (4.4), we have

(4.5) d(φs(t)(x), φs(t)(y)) < 2δ < δ2 for all t ∈ R

and hence

d(φt(x), φt(y)) < δ2 for all t ∈ R

is verified. Since φ is kinematic expansive, y = φτ (x) for some τ ∈ (−ε, ε),
which shows that φ is KH-kinematic expansive. �

Example 4.3 (Horocycle flow). It is well-known that the horocycle on a com-
pact surface of constant negative curvature is equivalent to a flow θ defined
as follows. Recall the space X = Γ\PSL(2,R) = {Γg, g ∈ PSL(2,R)} from
Example 3.3. Let bt = {±Bt} ∈ PSL(2,R) with Bt = ( 1 t

0 1 ) ∈ SL(2,R), t ∈ R.
Define a flow θt : X → X, θt(Γg) = Γgbt for all g ∈ PSL(2,R), t ∈ R. Accord-
ing to [8, Theorem 3.5], θ is kinematic expansive. Since θ has no fixed points
(see [8, Theorem 3.9]), it follows from Theorem 4.1 that θ is KH-kinematic
expansive.

The next result presents another equivalent definition of KH-kinematic ex-
pansivity.
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Theorem 4.4. A flow φ is KH-kinematic expansive if and only if for all ε > 0
there exists δ > 0 such that if x, y ∈ X, s ∈ C satisfying

max{d(φt(x), φs(t)(x)), d(φt(x), φs(t)(y))} < δ for all t ∈ R,

then dφ(x, y) < ε; recall the distance dφ in Subsection 3.3.

Proof. (⇒) The proof is similar to that of [2, Prop. 2.6].
(⇐) Taking s(t) = t and using Proposition 3.10 we deduce that φ is kine-

matic expansive. Analogously to Proposition 3.19, fix(φ) is open and hence φ
is KH-kinematic expansive, owing to Theorem 4.1. �

It seems natural to ask whether we can replace the hypothesis s ∈ C by
s ∈ K in Definition 4.1. The answer is as follows.

Proposition 4.5. Let φ be a continuous flow on X. The following assertions
are equivalent.

(i) For all ε > 0 there exists δ > 0 such that if x, y ∈ X, s ∈ C surjective
satisfying

max{d(φt(x), φs(t)(x)), d(φt(x), φs(t)(y))} < δ for all t ∈ R,

then y = φτ (x) for some τ ∈ (ε, ε).
(ii) φ is kinematic expansive.

Proof. (⇒) This is clear.
(⇐) Suppose that φ is kinematic expansive. Let ε > 0 and δ a separating

constant for ε. Set ρ = δ/2. For x, y ∈ X, s ∈ K such that

max{d(φt(x), φs(t)(x)), d(φt(x), φs(t)(y))} < ρ for all t ∈ R,

then

d(φs(t)(x), φs(t)(y)) < 2ρ = δ for all t ∈ R.
Since s is surjective,

d(φt(x), φt(y)) < δ for all t ∈ R

is verified. This implies y = φτ (x) for some |τ | < ε. The proof is complete. �

Remark 4.6. Analogously, if we set s ∈ C surjective in Definition 3.8, the
definition is equivalent to that of separating flows.

4.2. Strong KH-kinematic expansive flows

Like kinematic expansivity, KH-kinematic expansivity is not an invariant
under time change. Otherwise, KH-kinematic expansivity would imply strong
kinematic expansivity, which is not always true; see Table 3. This motivates
to consider the following expansivity.

Definition 4.2. We say that φ is strong KH-kinematic expansive if every time
change of φ is KH-kinematic expansive.
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Strong KH-expansivity is defined analogously. The next result follows im-
mediately from Theorems 3.20 and 4.1.

Theorem 4.7. A flow is strong KH-kinematic expansive (resp. strong KH-
expansive) if and only if it is strong kinematic expansive (resp. strong separat-
ing) and the set of its fixed points is open.

Example 4.8. Recall the horocycle flow θ from Example 4.3.
(a) The flow θ is strong KH-kinematic expansive. This can be proved sim-

ilarly to its strong kinematic expansivity in [9, Theorem 3.9], or this follows
from the fact that θ is strong kinematic expansive and the set of fixed points
is empty.

(b) The flow θ is not geometric separating; see [8, Remark 3.6(a)]. Therefore
it is not geometric expansive as well.

Example 4.9. Recall the flow φ in Example 3.11. It is clear that fix(φ) =
∅. Since φ is kinematic expansive, φ is KH-kinematic expansive (and hence
KH-expansive). However, it is neither strong KH-expansive nor strong KH-
kinematic expansive, which is due to the fact that it is not strong separating.

4.3. KH-positive kinematic expansive flows

Let us consider a new notion of expansive flows.

Definition 4.3. Let (X, d) be a compact metric space. A continuous flow
φ : R × X → X is called KH-positive kinematic expansive if for every ε > 0,
there exists δ > 0 such that for x, y ∈ X, s : [0,∞) → [0,∞) continuous,
s(0) = 0 satisfying

max{d(φt(x), φs(t)(x)), d(φt(x), φs(t)(y))} < δ for all t ∈ [0,∞),

then y = φτ (x) for some τ ∈ (−ε, ε).

The definitions of positive kinematic expansive flows and KH-positive expan-
sive flows are analogous.

The following theorem is proved similarly to Theorem 4.1.

Theorem 4.10. Let φ be a continuous flow on compact metric space X. Then
φ is KH-positive kinematic expansive (reps. KH-positive expansive) if and only
if φ is positive kinematic expansive (resp. separating) and fix(φ) is open.

Proof. Note that for x ∈ X and t ∈ R, if φt(x) = x, then φ−t(x) = x. This
yields that if φt(x) = x for all t ∈ [0,∞), then x is a fixed point of φ. The proof
of this theorem is analogous to that of [3, Prop. 2.9] and Theorem 4.1. �

The next result is a characterization of KH-positive expansive flows on com-
pact surfaces.

Proposition 4.11. Let φ be a continuous flow on a compact surface. Then
φ is KH-positive kinematic expansive if and only if φ is positive kinematic
expansive.
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Proof. It was shown in [2, Prop. 6.8] that if φ is positive expansive on a compact
surface, then fix(φ) = ∅. The proposition follows from Theorem 4.10. �

Remark 4.12. A C-positive kinematic expansive flow has at least one periodic
orbit. More clearly, the full space is the union of finite periodic orbits and
fixed points (see Lemma 4.1 and Theorem 4.2 in [1]). In general, a KH-positive
kinematic expansive flow may not have this property. One example is the
horocycle flow θ in Example 4.3 which has no periodic points and no fixed
points.

Let φ be a continuous flow on a compact metric space X and define the
inverse flow φ−1 as φ−1t = φ−t.

Definition 4.4. We say that φ is KH-kinematic bi-expansive (resp. kinematic
bi-expansive) if φ and φ−1 are KH-positive kinematic expansive (resp. positive
kinematic expansive).

Example 4.13. (a) The horocyle flow θ defined in Example 4.3 is KH-bi-
kinematic expansive. The proof is analogous to that of [8, Theorem 3.5].

(b) Consider the flow ϕ in Example 3.3(b). It was shown in [8, Remark
3.6(b)] that both ϕ and ϕ−1 are not positive separating, hence they are not
KH-positive expansive.

Lemma 4.14. Each fixed point of a kinematic bi-expansive flow is an isolated
point of the space. Therefore, the set of its fixed points is open.

For a proof, see [2, Prop. 6.16]. Using the above lemma and Theorem 4.10
we obtain the following result.

Theorem 4.15. A flow is KH-kinematic bi-expansive if and only if it is kine-
matic bi-expansive.

4.4. Hierarchy of expansive flows

The hierarchy of expansive flows is illustrated in Table 1.

Table 1. Hierarchy of expansive flows

C-expansivity =⇒ C-separationw� w�
Strong KH-kinematic expansivity =⇒ Strong KH-expansivityw� w�

KH-kinematic expansivity =⇒ KH-expansivityw� w�
Kinematic expansivity =⇒ Separation

Let us consider some examples.
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p

Figure 4. Strong kinematic expansive flow in the 2-torus with
a fake saddle

Example 4.16. Consider an irrational flow on the 2-torus T2 = R2/Z2 with
velocity field X. We take any non-negative smooth function f with just one
zero at some point p in the torus. Denote by φ the flow generated by the
vector field fX; see Figure 4 for an illustration. Then φ is (strong) kinematic
expansive; see [2, Example 2.8]. However, due to fix(φ) = {p}, which is a
non-open set, φ is not KH-kinematic expansive.

Example 4.17. Consider the separating but not expansive homeomorphism σ
on X in Example 3.1. Let f : X → [0,∞) be a constant function. By Theorem
3.13 and Remark 3.18, susσ,f is C-separating but not kinematic expansive and
hence it is not KH-kinematic expansive. In addition, due to Proposition 2.7
susσ,f has no fixed points. This shows that susσ,f is strong KH-expansive.

Table 2 below recalls counterexamples for the hierarchy in Table 1.

Table 2. Diagram of counterexamples 1

C-expansivity
6⇐=

Ex. 4.17
C-separation~w�Ex. 4.8
~w�Ex. 4.8

Strong KH-kinematic expansivity
6⇐=

Ex. 4.17
Strong KH-expansivity~w�Ex. 4.9

~w�Ex. 4.9

KH-kinematic expansivity
6⇐=

Ex. 4.17
KH-expansivity~w�Ex. 4.16
~w�Ex. 4.16

Kinematic expansivity
6⇐=

Ex. 4.17
Separation

Remark 4.18. (i) All expansive (and separating) flows introduced in this paper
have finite sets of fixed points. Due to Lemma 3.19, the set of fixed points is
open if and only if each fixed point is an isolated point. The classes of expansive
and separating flows having open fixed points sets consist of C-expansive flows,
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(strong) KH-kinematic expansive flows, (strong) KH-expansive flows and C-
separating flows.

(ii) Expansive properties which are invariant properties under time change
of flows include C-expansivity, geometric expansivity, strong KH-kinematic ex-
pansivity, strong KH-expansivity, strong kinematic expansivity, C-separation,
geometric separation, and strong separation.

(iii) Expansive flows having kinematic expansive properties are C-expansive,
geometric expansive, (strong) KH-kinematic expansive, and (strong) kinematic
expansive flows.

The next table recalls counterexamples of some other expansive and sepa-
rating flows.

Table 3. Diagram of counterexamples 2

Geometric expansivity
6=⇒

Ex. 3.7
KH-expansivity

Ex. 3.7
w�� ~w�Ex. 4.8 Ex. 4.9

w�� ~w�Ex. 4.17

Strong KH-kinematic expansivity
6⇐=

Ex. 4.17
Strong separation

Ex. 4.8
w�� ~w�Ex. 4.17 Ex. 4.17

w�� ~w�Ex. 4.9

C-separation
6⇐=

Ex. 4.16
Kinematic expansivity

The counterexamples are based on the property of fixed points sets, the
strong and ‘kinematic’ properties (see previous remark). Let us explain the
left column in Table 3. Due to the fact that the fixed points set of a (strong)
KH-kinematic expansive is open, whereas that of a geometric expansive flow
may be non-open, one of KH-kinematic expansivity and geometric expansivity
does not imply the other. The same occurs to strong KH-kinematic expansivity
and C-separation, which is since a strong KH-kinematic expansive flow may
not a conjugacy invariant and a C-separating flow may not have kinematic
expansivity. The right column in Table 3 can be explained analogously.
Summary of counterexamples: We have presented several variations of
expansive and separating flows on compact metric spaces. In Table 2 we recall
the counterexamples in the hierarchy in Table 1. The concepts of expansivity
and separation in Table 2 are not equivalent in the general context of continuous
flows on compact metric spaces. Table 3 recalls the counterexamples in the
hierarchy of some other expansive and separating properties. These may be
seen as a supplement of the hierarchy provided by Artigue in [2].

The following questions arise naturally.

Question 1. Do geometric separation and kinematic expansivity imply geo-
metric expansivity?
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Question 2. Do strong separation and kinematic expansivity imply strong
kinematic expansivity?
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