DOI QR코드

DOI QR Code

THE INTERIOR GRADIENT ESTIMATE FOR A CLASS OF MIXED HESSIAN CURVATURE EQUATIONS

  • Zhou, Jundong (School of Mathematical Sciences University of Science and Technology of China and School of Mathematics and Statistics Fuyang Normal University)
  • Received : 2020.12.09
  • Accepted : 2021.10.14
  • Published : 2022.01.01

Abstract

In this paper, we are concerned with a class of mixed Hessian curvature equations with non-degeneration. By using the maximum principle and constructing an auxiliary function, we obtain the interior gradient estimate of (k - 1)-admissible solutions.

Keywords

Acknowledgement

The author would like to thank prof. Chuan-Qiang Chen for a simpler proof for Lemma 3.1.

References

  1. E. Bombieri, E. De Giorgi, and M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Rational Mech. Anal. 32 (1969), 255-267. https://doi.org/10.1007/BF00281503
  2. C. Chen, L. Chen, X. Mei, and N. Xiang, Neumann problem for a class of fully nonlinear equations, arXiv:2003.05323 2020.323 2020.
  3. L. Chen and Y. He, Fully nonlinear equations of Krylov type on Riemannian manifolds with negative curvature, arXiv:2006.02325v1.
  4. L. Chen, A. Shang, and Q. Tu, A class of prescribed Weingarten curvature equations in Euclidean space, Comm. Partial Differential Equations 46 (2021), no. 7, 1326-1343. https://doi.org/10.1080/03605302.2021.1873369
  5. C. Chen, L. Xu, and D. Zhang, The interior gradient estimate of prescribed Hessian quotient curvature equations, Manuscripta Math. 153 (2017), no. 1-2, 159-171. https://doi.org/10.1007/s00229-016-0877-4
  6. R. Finn, On equations of minimal surface type, Ann. of Math. (2) 60 (1954), 397-416. https://doi.org/10.2307/1969841
  7. J.-X. Fu and S.-T. Yau, A Monge-Ampere-type equation motivated by string theory, Comm. Anal. Geom. 15 (2007), no. 1, 29-75. http://projecteuclid.org/euclid.cag/1175790904 https://doi.org/10.4310/CAG.2007.v15.n1.a2
  8. J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kahler manifolds and the complex Monge-Ampere equation, J. Differential Geom. 78 (2008), no. 3, 369-428. http://projecteuclid.org/euclid.jdg/1207834550
  9. P. Guan and X. Zhang, A class of curvature type equations, Pure Appl. Math. Q. 17 (2021), no. 3, 865-907. https://doi.org/10.4310/PAMQ.2021.v17.n3.a2
  10. R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. https://doi.org/10.1007/BF02392726
  11. G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45-70. https://doi.org/10.1007/BF02392946
  12. N. J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. H. Poincar'e Anal. Non Lin'eaire 4 (1987), no. 5, 405-421. https://doi.org/10.1016/s0294-1449(16)30357-2
  13. N. V. Krylov, On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc. 347 (1995), no. 3, 857-895. https://doi.org/10.2307/2154876
  14. O. A. Ladyzhenskaya and N. N. Ural'tseva, Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Comm. Pure Appl. Math. 23 (1970), 677-703. https://doi.org/10.1002/cpa.3160230409
  15. Y. Y. Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Differential Equations 90 (1991), no. 1, 172-185. https://doi.org/10.1016/0022-0396(91)90166-7
  16. C. Li, C. Ren, and Z. Wang, Curvature estimates for convex solutions of some fully nonlinear Hessian-type equations, Calc. Var. Partial Differential Equations 58 (2019), no. 6, Paper No. 188, 32 pp. https://doi.org/10.1007/s00526-019-1623-z
  17. D. H. Phong, S. Picard, and X. Zhang, On estimates for the Fu-Yau generalization of a Strominger system, J. Reine Angew. Math. 751 (2019), 243-274. https://doi.org/10.1515/crelle-2016-0052
  18. L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J. 25 (1976), no. 9, 821-855. https://doi.org/10.1512/iumj.1976.25.25066
  19. J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, in Global theory of minimal surfaces, 283-309, Clay Math. Proc., 2, Amer. Math. Soc., Providence, RI, 2005.
  20. N. S. Trudinger, Gradient estimates and mean curvature, Math. Z. 131 (1973), 165-175. https://doi.org/10.1007/BF01187224
  21. N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal. 111 (1990), no. 2, 153-179. https://doi.org/10.1007/BF00375406
  22. X.-J. Wang, Interior gradient estimates for mean curvature equations, Math. Z. 228 (1998), no. 1, 73-81. https://doi.org/10.1007/PL00004604
  23. L. Weng, The interior gradient estimate for some nonlinear curvature equations, Commun. Pure Appl. Anal. 18 (2019), no. 4, 1601-1612. https://doi.org/10.3934/cpaa.2019076