Acknowledgement
This study was supported by a grant (BCRI18027-1) of Chonnam National University Hospital Biomedical Research Institute.
References
- IASP. Taxonomy: neuropathic pain [Internet]. Washington, D.C.: IASP; 2017. Available at: https://www.iasp-pain.org/resources/terminology/?ItemNumber=1698#Neuropathicpain.
- I ASP. Epidermiolog y of neuropat hic pain: how common is neuropathic pain, and what is its impact? [Internet]. Washington, D.C.: IASP; 2014. Available at: https://www.iasp-pain.org/advocacy/global-year/neuropathicpain/?itemNumber=3934.
- Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015; 14: 162-73. https://doi.org/10.1016/S1474-4422(14)70251-0
- Derry S, Bell RF, Straube S, Wiffen PJ, Aldington D, Moore RA. Pregabalin for neuropathic pain in adults. Cochrane Database Syst Rev 2019; 1: CD007076.
- Heo BH, Shin JY, Park KS, Lee HG, Choi JI, Yoon MH, et al. Effects of tianeptine on the development and maintenance of mechanical allodynia in a rat model of neuropathic pain. Neurosci Lett 2016; 633: 82-6. https://doi.org/10.1016/j.neulet.2016.09.022
- Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K. P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 2008; 28: 4949-56. https://doi.org/10.1523/JNEUROSCI.0323-08.2008
- Yu T, Zhang X, Shi H, Tian J, Sun L, Hu X, et al. P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death Dis 2019; 10: 165. https://doi.org/10.1038/s41419-019-1425-4
- Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992; 50: 355-63. https://doi.org/10.1016/0304-3959(92)90041-9
- Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976; 17: 1031-6. https://doi.org/10.1016/0031-9384(76)90029-9
- Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55-63. https://doi.org/10.1016/0165-0270(94)90144-9
- Yoon MH, Choi JI, Kwak SH. Characteristic of interactions between intrathecal gabapentin and either clonidine or neostigmine in the formalin test. Anesth Analg 2004 ;98: 1374-9. https://doi.org/10.1213/01.ANE.0000107937.00902.FC
- Yoon MH, Choi JI, Jeong SW. Antinociception of intrathecal cholinesterase inhibitors and cholinergic receptors in rats. Acta Anaesthesiol Scand 2003; 47: 1079-84. https://doi.org/10.1034/j.1399-6576.2003.00212.x
- Tallarida RJ. Drug synergism and dose-effect data analysis. Boca Raton, Chapman and Hall/CRC. 2000.
- Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Primers 2017; 3: 17002. https://doi.org/10.1038/nrdp.2017.2
- Tallarida RJ. Quantitative methods for assessing drug synergism. Genes Cancer 2011; 2: 1003-8. https://doi.org/10.1177/1947601912440575
- Salat K, Librowski T, Nawiesniak B, Gluch-Lutwin M. Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain. Neurol Res 2013; 35: 948-58. https://doi.org/10.1179/1743132813Y.0000000236
- Zhang SS, Wu Z, Zhang LC, Zhang Z, Chen RP, Huang YH, et al. Efficacy and safety of pregabalin for treating painful diabetic peripheral neuropathy: a meta-analysis. Acta Anaesthesiol Scand 2015; 59: 147-59. https://doi.org/10.1111/aas.12420
- Verma V, Singh N, Singh Jaggi A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol 2014; 12: 44-56. https://doi.org/10.2174/1570159X1201140117162802
- Belliotti TR, Capiris T, Ekhato IV, Kinsora JJ, Field MJ, Heffner TG, et al. Structure-activity relationships of pregabalin and analogues that target the alpha(2)-delta protein. J Med Chem 2005; 48: 2294-307. https://doi.org/10.1021/jm049762l
- Ben-Menachem E. Pregabalin pharmacology and its relevance to clinical practice. Epilepsia 2004; 45 Suppl 6: 13-8. https://doi.org/10.1111/j.0013-9580.2004.455003.x
- Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin Pharmacol Toxicol 2005; 96: 399-409. https://doi.org/10.1111/j.1742-7843.2005.pto_96696601.x
- Lee HG, Choi JI, Yoon MH, Obata H, Saito S, Kim WM. The antiallodynic effect of intrathecal tianeptine is exerted by increased serotonin and norepinephrine in the spinal dorsal horn. Neurosci Lett 2014; 583: 103-7. https://doi.org/10.1016/j.neulet.2014.09.022
- Uzbay TI. Tianeptine: potential influences on neuroplasticity and novel pharmacological effects. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 915-24. https://doi.org/10.1016/j.pnpbp.2007.08.007
- Bilge SS, Ilkaya F, Darakci O, Ciftcioglu E, Bozkurt A. Opioid receptors contribute to antinociceptive effect of tianeptine on colorectal distension-induced visceral pain in rats. Pharmacology 2018; 101: 96-103. https://doi.org/10.1159/000484207
- Jung YH, Kim YO, Han JH, Kim YC, Yoon MH. Isobolographic analysis of drug combinations with intrathecal BRL52537 (κ-opioid agonist), pregabalin (calcium channel modulator), AF 353 (P2X3 receptor antagonist), and A804598 (P2X7 receptor antagonist) in neuropathic rats. Anesth Analg 2017; 125: 670-7. https://doi.org/10.1213/ANE.0000000000001883
- Yoon MH, Bae HB, Choi JI, Jeong SW, Chung SS, Yoo KY, et al. Evaluation of interaction between intrathecal adenosine and MK801 or NBQX in a rat formalin pain model. Pharmacology 2005; 75: 157-64. https://doi.org/10.1159/000088345
- Yoon MH, Choi JI, Jeong SW. Spinal gabapentin and antinociception: mechanisms of action. J Korean Med Sci 2003; 18: 255-61. https://doi.org/10.3346/jkms.2003.18.2.255