References
- N. Davis. (2011). Global Risks 2011 Report. In World Economic Forum: Cologne, Germany.
- H. Hoff. (2011). Background paper for the Bonn2011 Conference: the Water. Energy and Food Security Nexus.
- A. Endo, I. Tsurita, K. Burnett & P. M. Orencio. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20-30. DOI : 10.1016/j.ejrh.2015.11.010
- Li, Guijun, Huang, Daohan, Li, Yulong. (2016). Water-energy-food nexus: a new perspective for regional sustainable development research. Journal of Central University of Finance and Economics (12), 15. CNKI:SUN:ZYCY.0.2016-12-008
- Y. Chang, G. Li, Y. Yao, L. Zhang & C. Yu. (2016). Quantifying the water-energy-food nexus: Current status and trends. Energies, 9(2), 65. https://doi.org/10.3390/en9020065
- Rasul, G., & Sharma, B. (2016). The nexus approach to water-energy-food security: an option for adaptation to climate change. Climate Policy, 16(6), 682-702. DOI : 10.1080/14693062.2015.1029865
- D. Conway et al. (2015). Climate and southern Africa's water-energy-food nexus. Nature Climate Change, 5(9), 837-846. DOI : 10.1038/NCLIMATE2735
- J. Halbe et al. (2015). Governance of transitions towards sustainable development-the water-energy-food nexus in Cyprus. Water International, 40(5-6), 877-894. DOI : 10.1080/02508060.2015.1070328
- N. Vora, A. Shah, M. M. Bilec & V. Khanna. (2017). Food-energy-water nexus: Quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustainable Chemistry & Engineering, 5(3), 2119-2128. DOI : 10.1021/acssuschemeng.6b02122
- J. Sherwood, R. Clabeaux & M. Carbajales-Dale. (2017). An extended environmental input-output lifecycle assessment model to study the urban food-energy-water nexus. Environmental Research Letters, 12(10), 105003. DOI : 10.1088/1748-9326/aa83f0
- E. Martinez-Hernandez, M. Leach & A. Yang. (2017). Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym. Applied Energy, 206, 1009-1021. DOI : 10.1016/j.apenergy.2017.09.022
- H. Schlor, S. Venghaus & J. F. Hake. (2018). The FEW-Nexus city index-Measuring urban resilience. Applied energy, 210, 382-392. DOI : 10.1016/j.apenergy.2017.02.026
- Y. Zhan & L. Wu. (2014). Water, energy, and food conflicts in China and the United States. [J]. China Economic Report, 2014(1), 109-111.
- Y. Chang et al. (2016). Overview of the water-energy-food nexus and implications for China. Water Development Research, 16(5), 4. CNKI:SUN:SLFZ.0.2016-05-019
- R. Zheng, J. Tang & X. Jin. (2018). Water-energy-food nexus: perceptions and solutions in geoscience. China Mining, 27(10), 6. CNKI:SUN:ZGKA.0.2018-10-007
- L. Li, J. Bi, Y. C. Zhou & M. M. Liu. (2018). Research progress on risk management based on food-energy-water nexus. China Population - Resources and Environment, 28(7), 8. DOI : 10.12062/cpre.20180203
- Liu Qian, Zhang Yuan, Wang Y. S., Huang Dao Han, & Li Gui Jun. (2018). Advances in urban water-energy-food nexus (wef-nexus) research - A review based on bibliometrics. Urban Development Research, 25(10), 15. CNKI:SUN:CSFY.0.2018-10-002
- H. Mi & W. Zhou. (2010). (2010). Systematic simulation of China's food, freshwater, and energy demand in the next 30 years. Population and Economy, (1), 7. CNKI:SUN:RKJJ.0.2010-01-001
- Li Guijun, Li Yulong, Jia Xiaojing, Du Lei, & Huang Daohan. (2016). Construction and simulation of dynamics model for water-energy-grain sustainable development system in Beijing. Management Review, 28(10), 16 CNKI:SUN:ZWGD.0.2016-10-002
- Peng, Shao-Ming, Zheng, Xiao-Kang, Wang, Yu, & Jiang, Gui-Qin. (2017). Synergistic optimization of water-energy-food in the Yellow River Basin Jane. Advances in Water Science, 28(5), 10. DOI : 10.14042/j.cnki.32.1309.2017.05.005
- P. Deng et al. (2017). Study on the evolutionary characteristics of regional water-energy-food coupling coordination--Jiangsu Province as an example. Journal of Water Resources and Water Engineering, 28(6), 7. CNKI:SUN:XBSZ.0.2017-06-041
- B. Bo et al. (2018). Study on the evolutionary characteristics of coupled and coordinated regional water-energy-food systems. China Rural Water Conservancy and Hydropower, (2), 6. DOI : 10.3969/j.issn.1007-2284.2018.02.017
- Li, Cheng-Yu, & Zhang, Shi-Qiang. (2020). Study on the inter-provincial water-energy-grain coupling coordination and influencing factors in China. China Population - Resources and Environment, 30(1), 9. CNKI:SUN:ZGRZ.0.2020-01-014
- Li, Guijun, Huang, Daohan, & Li, Yulong. (2017). Study on the evaluation of water-energy-grain input-output efficiency in different regions of China. Comparative Economic and Social Systems (3), 11. CNKI:SUN:JJSH.0.2017-03-014
- C. Z. Sun & X. D. Yan. (2018). Security evaluation and spatial correlation analysis of the coupled water resources-energy-grain system in China. Water Resources Conservation, 034(005), 1-8.
- J. F. Bai & N. H. Zhang. (2018). Analysis of spatial and temporal variability and drivers of water-energy-grain stress in China. Geoscience, 38(10), 1653-1660. DOI : 10.13249/j.cnki.sgs.2018.10.009
- K. Tone. (2001). A slacks-based measure of efficiency in data envelopment analysis. European journal of operational research, 130(3), 498-509. DOI : 10.1016/S0377-2217(99)00407-5
- D. W. Caves, L. R. Christensen & W. E. Diewert. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: Journal of the Econometric Society, 1393-1414. doi.org/10.2307/1913388
- R. Fare, S. Grosskopf, M. Norris & Z. Zhang. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American economic review, 66-83. jstor.org/stable/2117971