DOI QR코드

DOI QR Code

Research on Water-Energy-Food Comprehensive Utilization Efficiency in China

중국의 물-에너지-식량 종합 이용 효율성을 평가 연구

  • LU, YULIN (Department of Public Policy, Mokwon University) ;
  • HE, YAN (Department of Public Policy, Mokwon University)
  • Received : 2022.09.20
  • Accepted : 2022.12.20
  • Published : 2022.12.28

Abstract

The World Economic Forum has included Water-Energy-Food among the three major risk groups in the world, and Water-Energy-Food is related to the development strategies of countries and the lives of their citizens. This study calculates the combined Water-Energy-Food use efficiency in China for 2011-2020 based on the SBM-Malmquist index. The results show that the overall combined Water-Energy-Food efficiency in China is low, but shows an upward trend. There is a clear variability in the combined Water-Energy-Food utilization efficiency in China, with an overall geographic distribution pattern of East > Middle > West. Only Beijing and Shanghai have reached the real above effective nationwide, and all other provinces have inefficiency between input and output. The Malmquist index of integrated Water-Energy-Food utilization efficiency is 1.136, with an up ward trend, and technical efficiency and technological progress lead the improvement of integrated Water-Energy-Food utilization efficiency in China at the sametime. The Water-Energy-Food issue should be raised to a strategic level as soon as possible, and policy support should be provided for its development. Each region should establish a cross-regional coordinating body to formulate targeted measures according to the province's food production and water distribution, so as to promote economic transformation from sloppy development to green development as soon as possible.

2011년, 세계경제포럼(The World Economic Forum)은 물-에너지-식량을 세계 3대 위험군에 포함했다. 물-에너지-식량은 국가의 발전 전략과 국민의 삶과 관계된다. 본 연구에서는 SBM-Malmquist 지수를 기반으로 중국의 2011-2020년 물-에너지-식량 종합 이용 효율성을 계산한다. 측정 결과를 살펴보면, 중국 전체 물-에너지-식량의 종합 이용은 효율성이 낮으나 상승세를 보였다. 전국적으로 물-에너지-식량 종합 이용 효율성은 뚜렷한 차별성이 존재하며 전반적으로 동부> 중부> 서부의 지리적 분포 구도를 보인다. 전국에 Beijing과 Shanghai만 진정한 유효에 이르고 기타 각 성의 투입과 산출 사이에는 모두 비효율 상태가 존재한다. 물-에너지-식량 종합 이용 효율성의 Malmquist 지수는 1.136으로 상승세를 보이며 기술효율과 기술진보를 통해 중국의 물-에너지-식량 종합 이용 효율성의 향상을 이끌고 있다. 하루빨리 물-에너지-식량 문제에 있어 전략적높이를 끌어올려 그 발전에 대한 정책적 지원을 해야 한다. 각 지역은 지역 간 조율기구를 설립해야 하며 각 성의 식량 생산량, 수자원 분포 등 문제에 따라 맞춤형 조치를 제정해 경제가 조방형 발전에서 녹색 발전으로 전환되도록 조속히 추진해야 한다.

Keywords

References

  1. N. Davis. (2011). Global Risks 2011 Report. In World Economic Forum: Cologne, Germany.
  2. H. Hoff. (2011). Background paper for the Bonn2011 Conference: the Water. Energy and Food Security Nexus.
  3. A. Endo, I. Tsurita, K. Burnett & P. M. Orencio. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20-30. DOI : 10.1016/j.ejrh.2015.11.010
  4. Li, Guijun, Huang, Daohan, Li, Yulong. (2016). Water-energy-food nexus: a new perspective for regional sustainable development research. Journal of Central University of Finance and Economics (12), 15. CNKI:SUN:ZYCY.0.2016-12-008
  5. Y. Chang, G. Li, Y. Yao, L. Zhang & C. Yu. (2016). Quantifying the water-energy-food nexus: Current status and trends. Energies, 9(2), 65. https://doi.org/10.3390/en9020065
  6. Rasul, G., & Sharma, B. (2016). The nexus approach to water-energy-food security: an option for adaptation to climate change. Climate Policy, 16(6), 682-702. DOI : 10.1080/14693062.2015.1029865
  7. D. Conway et al. (2015). Climate and southern Africa's water-energy-food nexus. Nature Climate Change, 5(9), 837-846. DOI : 10.1038/NCLIMATE2735
  8. J. Halbe et al. (2015). Governance of transitions towards sustainable development-the water-energy-food nexus in Cyprus. Water International, 40(5-6), 877-894. DOI : 10.1080/02508060.2015.1070328
  9. N. Vora, A. Shah, M. M. Bilec & V. Khanna. (2017). Food-energy-water nexus: Quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustainable Chemistry & Engineering, 5(3), 2119-2128. DOI : 10.1021/acssuschemeng.6b02122
  10. J. Sherwood, R. Clabeaux & M. Carbajales-Dale. (2017). An extended environmental input-output lifecycle assessment model to study the urban food-energy-water nexus. Environmental Research Letters, 12(10), 105003. DOI : 10.1088/1748-9326/aa83f0
  11. E. Martinez-Hernandez, M. Leach & A. Yang. (2017). Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym. Applied Energy, 206, 1009-1021. DOI : 10.1016/j.apenergy.2017.09.022
  12. H. Schlor, S. Venghaus & J. F. Hake. (2018). The FEW-Nexus city index-Measuring urban resilience. Applied energy, 210, 382-392. DOI : 10.1016/j.apenergy.2017.02.026
  13. Y. Zhan & L. Wu. (2014). Water, energy, and food conflicts in China and the United States. [J]. China Economic Report, 2014(1), 109-111.
  14. Y. Chang et al. (2016). Overview of the water-energy-food nexus and implications for China. Water Development Research, 16(5), 4. CNKI:SUN:SLFZ.0.2016-05-019
  15. R. Zheng, J. Tang & X. Jin. (2018). Water-energy-food nexus: perceptions and solutions in geoscience. China Mining, 27(10), 6. CNKI:SUN:ZGKA.0.2018-10-007
  16. L. Li, J. Bi, Y. C. Zhou & M. M. Liu. (2018). Research progress on risk management based on food-energy-water nexus. China Population - Resources and Environment, 28(7), 8. DOI : 10.12062/cpre.20180203
  17. Liu Qian, Zhang Yuan, Wang Y. S., Huang Dao Han, & Li Gui Jun. (2018). Advances in urban water-energy-food nexus (wef-nexus) research - A review based on bibliometrics. Urban Development Research, 25(10), 15. CNKI:SUN:CSFY.0.2018-10-002
  18. H. Mi & W. Zhou. (2010). (2010). Systematic simulation of China's food, freshwater, and energy demand in the next 30 years. Population and Economy, (1), 7. CNKI:SUN:RKJJ.0.2010-01-001
  19. Li Guijun, Li Yulong, Jia Xiaojing, Du Lei, & Huang Daohan. (2016). Construction and simulation of dynamics model for water-energy-grain sustainable development system in Beijing. Management Review, 28(10), 16 CNKI:SUN:ZWGD.0.2016-10-002
  20. Peng, Shao-Ming, Zheng, Xiao-Kang, Wang, Yu, & Jiang, Gui-Qin. (2017). Synergistic optimization of water-energy-food in the Yellow River Basin Jane. Advances in Water Science, 28(5), 10. DOI : 10.14042/j.cnki.32.1309.2017.05.005
  21. P. Deng et al. (2017). Study on the evolutionary characteristics of regional water-energy-food coupling coordination--Jiangsu Province as an example. Journal of Water Resources and Water Engineering, 28(6), 7. CNKI:SUN:XBSZ.0.2017-06-041
  22. B. Bo et al. (2018). Study on the evolutionary characteristics of coupled and coordinated regional water-energy-food systems. China Rural Water Conservancy and Hydropower, (2), 6. DOI : 10.3969/j.issn.1007-2284.2018.02.017
  23. Li, Cheng-Yu, & Zhang, Shi-Qiang. (2020). Study on the inter-provincial water-energy-grain coupling coordination and influencing factors in China. China Population - Resources and Environment, 30(1), 9. CNKI:SUN:ZGRZ.0.2020-01-014
  24. Li, Guijun, Huang, Daohan, & Li, Yulong. (2017). Study on the evaluation of water-energy-grain input-output efficiency in different regions of China. Comparative Economic and Social Systems (3), 11. CNKI:SUN:JJSH.0.2017-03-014
  25. C. Z. Sun & X. D. Yan. (2018). Security evaluation and spatial correlation analysis of the coupled water resources-energy-grain system in China. Water Resources Conservation, 034(005), 1-8.
  26. J. F. Bai & N. H. Zhang. (2018). Analysis of spatial and temporal variability and drivers of water-energy-grain stress in China. Geoscience, 38(10), 1653-1660. DOI : 10.13249/j.cnki.sgs.2018.10.009
  27. K. Tone. (2001). A slacks-based measure of efficiency in data envelopment analysis. European journal of operational research, 130(3), 498-509. DOI : 10.1016/S0377-2217(99)00407-5
  28. D. W. Caves, L. R. Christensen & W. E. Diewert. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: Journal of the Econometric Society, 1393-1414. doi.org/10.2307/1913388
  29. R. Fare, S. Grosskopf, M. Norris & Z. Zhang. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American economic review, 66-83. jstor.org/stable/2117971