Acknowledgement
This study was financially supported by the Creative Materials Discovery Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2018M3D1A1059001), the Materials Innovation Project (NRF-2021M3H4A3026733), the Ministry of Science, ICT, and Future Planning (2022R1A2C4001517), and the BK21 FOUR Program through the NRF funded by the Ministry of Education (4199990514635).
References
- S. Biswas, Y. Lee, and H. Kim, "Micropower energy harvesting using high-efficiency indoor organic photovoltaics for self-powered sensor systems", J. Sens. Sci. Technol., Vol. 30, No. 6, pp. 364-368, 2021. https://doi.org/10.46670/JSST.2021.30.6.364
- X. Meng, J. Yang, C. Zhang, Y. Fu, K. Li, M. Sun, X. Wang, C. Dong, B. Ma, and Y. Ding, "Light-Driven CO2 Reduction over Prussian Blue Analogues as Heterogeneous Catalysts", ACS Catal., Vol. 12, No. 1, pp. 89-100, 2022. https://doi.org/10.1021/acscatal.1c04415
- C. Debeunne and D. Vivet, "A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping", Sens., Vol. 20, No. 7, pp. 2068(1)-2068(20), 2020.
- D. Jayachandran, A. Oberoi, A. Sebastian, T. H. Choudhury, B. Shankar, J. M. Redwig, and S. Das, "A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector", Nat. Electron, Vol. 3, No. 10, pp. 645-655, 2020.
- N. Lee, S. Kwon, and H. Ryu, "Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data", J. Sens. Sci. Technol., Vol. 29, No. 5, pp. 348-353, 2020. https://doi.org/10.46670/JSST.2020.29.5.348
- H. Kwen, S. Kim, J. Lee, P. Choi, and J. Shin, "Simulation of High-Speed and Low-Power CMOS Binary Image Sensor Based on Gate/Body-Tied PMOSFET-Type Photodetector Using Double-Tail Comparator", J. Sens. Sci. Technol., Vol. 29, No. 2, pp. 82-88, 2020. https://doi.org/10.5369/JSST.2020.29.2.82
- J. Lee, B. Choi, D. Seong, J. Lee, S. Kim, J. Lee, J. Shin, and P. Choi, "CMOS Binary Image Sensor with Gate/BodyTied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation", J. Sens. Sci. Technol., Vol. 27, No. 6, pp. 362-367, 2018. https://doi.org/10.5369/JSST.2018.27.6.362
- S. Ullah, J. Wang, P, Yang, L. Liu, S. Yang, T. Xia, H. Guo, and Y. Chen, "All-inorganic CsPbBr3 perovskite: a promising choice for photovoltaics", Mater. Adv., Vol. 2, No. 2, pp. 646-683, 2021. https://doi.org/10.1039/D0MA00866D
- X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y. Zhang, P. Tan, and S. Chen, "High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes", RSC Adv., Vol. 7, No. 17, pp. 10391-10396, 2017. https://doi.org/10.1039/C6RA27665B
- L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut", Nano Lett., Vol. 15, No. 6, pp. 3692-3696, 2015. https://doi.org/10.1021/nl5048779
- J. Ahn, Y. M. Lee, W. Kim, S. Y. Lee, J. H. Bae, J. Bang, and S. J. Oh, "Investigation of the Role of Cations during Anion Exchange in All-Inorganic Halide Perovskite Nanocrystals", ESC J. Solid State Sci. Technol., Vol. 10, No. 10, p. 106003, 2021.
- W. Kim, S. Jeon, and S. J. Oh, "Wearable sensors based on colloidal nanocrystals", Nano Convergence, Vol. 6, No. 10, pp. 1-13, 2019. https://doi.org/10.1186/s40580-018-0172-z
- J. Bang, J. Ahn, and S. J. Oh, "Designing a nanocrystalbased temperature and strain multi-sensor with one-step inkjet printing", J. Sens. Sci. Technol., Vol. 30, No. 4, pp. 218-222, 2021. https://doi.org/10.46670/JSST.2021.30.4.218
- P. Ramasamy, D. Lim, B. Kim, S. Lee, M. Lee, and J. Lee, "All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications", Chem. Commun., Vol. 52, No. 10, pp. 2067-2070, 2016. https://doi.org/10.1039/c5cc08643d
- X. Xu, Y. Dong, Y. Zhang, Z. Han, J. Liu, D. Yu, Y. Wei, Y. Zou, B. Huang, J. Chen, and H. Zeng, "High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing", Nano Research, Vol. 15, No. 6, pp. 5476-5482, 2022. https://doi.org/10.1007/s12274-022-4163-3
- D. Kwak, D. Lim, H. Ra, P. Ramasamy, and J. Lee, "High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector", RSC Adv., Vol. 6, No. 69, pp. 65252-65256, 2016. https://doi.org/10.1039/C6RA08699C
- A. Mandal, A. Ghosh, D. Ghosh, and S. Bhattacharyya, "Photodetector with High Responsivity by Thickness Tunable Mixed Halide Perovskite Nanosheets", ACS Appl. Mater. Interfaces, Vol. 13, No. 36, pp. 43104-43114, 2021. https://doi.org/10.1021/acsami.1c13452
- W. He, Q. Zhang, Y. Qi, J. Xiong, P. Ray, N. R. Pradhan, T. V. Shahbazyan, F. Han, and Q. Dai, "Luminescence properties of CsPbBr3:Mn nanocrystals", J. Nanopart. Res., Vol. 23, No. 80, pp. 1-9, 2021. https://doi.org/10.1007/s11051-020-05135-8
- T. Wang, T. Fang, X. Li, L. Xu, and J. Song, "Controllable Transient Photocurrent in Photodetectors Based on Perovskite Nanocrystals via Doping and Interfacial Engineering", J. Phys. Chem. C, Vol. 125, No. 10, pp. 5475-5484, 2021. https://doi.org/10.1021/acs.jpcc.0c11036
- M. R. Subramaniam, A. K. Pramod, S. A. Hevia, and S. K. Batabyal, "Enhanced Photoluminescence Quantum Yield, Lifetime, and Photodetector Responsivity of CsPbBr3 Quantum Dots via Antimony Tribromide Post-Treatment", J. Phys. Chem. C, Vol. 126, No. 3, pp. 1462-1470, 2022.
- Z. Gong, W. Zhang, S. Pan, and J. Pan, "Ag+/Bi3+ doping induced band structure and optoelectronic properties changes in CsPbBr3 crystals", J. Crystal Growth, Vol. 586, pp. 126604(1)-126604(8), 2022.
- D. Parobek, Y. Dong, T. Qiao, and D. H. Son, "Direct HotInjection Synthesis of Mn-Doped CsPbBr3 Nanocrystals", Chem. Mater., Vol. 30, No. 9, pp. 2939-2944, 2018. https://doi.org/10.1021/acs.chemmater.8b00310
- J. Navas, A. S. Coronilla, J. J. Gallardo, N. C. Hernandez, J. C. Pinero, R. Alcantara, C. F. Lorenzo, D. M. Santos, T. Aguilar, and J. M. Calleja, "New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+", Nanoscale, Vol. 7, No. 14, pp. 6216-6229, 2015. https://doi.org/10.1039/C5NR00041F
- W. Stam, J. J. Geuchies, T. Altantzis, K. H. Bos, J. D. Meeldijk, S. V. Aert, S. Bals, D. Vanmaekelbergh, and C. D. Donega, "Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-xMxBr3 Perovskite Nanocrystals through Cation Exchange", J. Am. Chem. Soc., Vol. 139, No. 11, pp. 4087-4097, 2017. https://doi.org/10.1021/jacs.6b13079
- S. Jung, J. H. Kim, J. W. Choi, J. Kang, S. Jin, Y. Kang, and M. Song, "Enhancement of Photoluminescence Quantum Yield and Stability in CsPbBr3 Perovskite Quantum Dots by Trivalent Doping", Nanomater., Vol. 10, No. 4, , pp. 710(1)-710(10), 2020.
- W. Yan, J. Shen, Y. Zhu, Y. Gong, J. Zhu, Z. When, and C. Li, "CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy", Nano Research, Vol. 14, No. 11, pp. 4038-4045, 2021. https://doi.org/10.1007/s12274-021-3333-z
- M. Gong, R. Sakidja, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, and J. Z. Wu, "High-Performance AllInorganic CsPbBr3 Perovskite Nanocrystal Photodetectors with Superior Stability", ACS Nano, Vol. 13, No. 2, pp. 1772-1783, 2019. https://doi.org/10.1021/acsnano.8b07850
- L. Zhou, K. Yu, F. Yang, H. Cong, N. Wang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, "Insight into the effect of ligand-exchange on colloidal CsPbBr3 perovskite quantum dot/mesoporous-TiO2 composite-based photodetectors: much faster electron injection", J. Mater. Chem. C, Vol. 5, No. 25, pp. 6224-6233, 2017. https://doi.org/10.1039/C7TC01611E
- C. Zhao, Z. He, P. Wangyang, J. Tan, C. Shi, A. Pan, L. He, and Y. Liu, "Bidentate Ligand-Induced Oriented Transformation of CsPbBr3 Perovskite Nanocrystals into Nanowires for X-ray Photodetectors", ACS Appl. Nano Mater., Vol. 5, No. 10, pp. 13737-13744, 2022. https://doi.org/10.1021/acsanm.2c00642
- M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, "The surface science of nanocrystals", Nat. Mater., Vol. 15, No. 2, pp. 141-153, 2016. https://doi.org/10.1038/NMAT4526
- Z. Pang, J. Zhang, W. Cao, X. Kong, and X. Peng, "Partitioning surface ligands on nanocrystals for maximal solubility", Nat. Commun., Vol. 10, No. 1, pp. 1-8, 2019. https://doi.org/10.1038/s41467-018-07882-8