DOI QR코드

DOI QR Code

All-Inorganic Metal Halide Perovskite (CsPbX3; X = Cl, Br, I) Nanocrystal-Based Photodetectors

  • Junhyuk, Ahn (Department of Materials Science and Engineering, Korea University) ;
  • Junhyeok, Park (Department of Materials Science and Engineering, Korea University) ;
  • Soong Ju, Oh (Department of Materials Science and Engineering, Korea University)
  • Received : 2022.11.13
  • Accepted : 2022.11.29
  • Published : 2022.11.30

Abstract

Currently, photodetectors are being extensively studied and developed for next-generation applications, such as in autonomous vehicles and image sensors. In this regard, all-inorganic metal halide perovskite (CsPbX3; X = Cl, Br, and I) nanocrystals (NCs) have emerged as promising building blocks for various applications owing to their high absorption coefficients, tunable bandgaps, high defect tolerances, and solution processability. These features, which are typically required for the development of advanced optoelectronics, can be engineered by modifying the chemical compositions and surface chemistry of the NCs. Herein, we briefly review various strategies adopted for the application of CsPbX3 perovskite NCs in photodetectors and for improving device performance. First, modifications of the chemical compositions of CsPbX3 NCs to tune their optical bandgaps and improve the charge-transport mechanism are discussed. Second, the application of surface chemistry to improve oxidation resistance and carrier mobility is described. In the future, perovskite NCs with prospective features, such as non-toxicity and high resistance to external stimuli, are expected to be developed for practical applications.

Keywords

Acknowledgement

This study was financially supported by the Creative Materials Discovery Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2018M3D1A1059001), the Materials Innovation Project (NRF-2021M3H4A3026733), the Ministry of Science, ICT, and Future Planning (2022R1A2C4001517), and the BK21 FOUR Program through the NRF funded by the Ministry of Education (4199990514635).

References

  1. S. Biswas, Y. Lee, and H. Kim, "Micropower energy harvesting using high-efficiency indoor organic photovoltaics for self-powered sensor systems", J. Sens. Sci. Technol., Vol. 30, No. 6, pp. 364-368, 2021. https://doi.org/10.46670/JSST.2021.30.6.364
  2. X. Meng, J. Yang, C. Zhang, Y. Fu, K. Li, M. Sun, X. Wang, C. Dong, B. Ma, and Y. Ding, "Light-Driven CO2 Reduction over Prussian Blue Analogues as Heterogeneous Catalysts", ACS Catal., Vol. 12, No. 1, pp. 89-100, 2022. https://doi.org/10.1021/acscatal.1c04415
  3. C. Debeunne and D. Vivet, "A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping", Sens., Vol. 20, No. 7, pp. 2068(1)-2068(20), 2020.
  4. D. Jayachandran, A. Oberoi, A. Sebastian, T. H. Choudhury, B. Shankar, J. M. Redwig, and S. Das, "A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector", Nat. Electron, Vol. 3, No. 10, pp. 645-655, 2020.
  5. N. Lee, S. Kwon, and H. Ryu, "Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data", J. Sens. Sci. Technol., Vol. 29, No. 5, pp. 348-353, 2020. https://doi.org/10.46670/JSST.2020.29.5.348
  6. H. Kwen, S. Kim, J. Lee, P. Choi, and J. Shin, "Simulation of High-Speed and Low-Power CMOS Binary Image Sensor Based on Gate/Body-Tied PMOSFET-Type Photodetector Using Double-Tail Comparator", J. Sens. Sci. Technol., Vol. 29, No. 2, pp. 82-88, 2020. https://doi.org/10.5369/JSST.2020.29.2.82
  7. J. Lee, B. Choi, D. Seong, J. Lee, S. Kim, J. Lee, J. Shin, and P. Choi, "CMOS Binary Image Sensor with Gate/BodyTied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation", J. Sens. Sci. Technol., Vol. 27, No. 6, pp. 362-367, 2018. https://doi.org/10.5369/JSST.2018.27.6.362
  8. S. Ullah, J. Wang, P, Yang, L. Liu, S. Yang, T. Xia, H. Guo, and Y. Chen, "All-inorganic CsPbBr3 perovskite: a promising choice for photovoltaics", Mater. Adv., Vol. 2, No. 2, pp. 646-683, 2021. https://doi.org/10.1039/D0MA00866D
  9. X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y. Zhang, P. Tan, and S. Chen, "High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes", RSC Adv., Vol. 7, No. 17, pp. 10391-10396, 2017. https://doi.org/10.1039/C6RA27665B
  10. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut", Nano Lett., Vol. 15, No. 6, pp. 3692-3696, 2015. https://doi.org/10.1021/nl5048779
  11. J. Ahn, Y. M. Lee, W. Kim, S. Y. Lee, J. H. Bae, J. Bang, and S. J. Oh, "Investigation of the Role of Cations during Anion Exchange in All-Inorganic Halide Perovskite Nanocrystals", ESC J. Solid State Sci. Technol., Vol. 10, No. 10, p. 106003, 2021.
  12. W. Kim, S. Jeon, and S. J. Oh, "Wearable sensors based on colloidal nanocrystals", Nano Convergence, Vol. 6, No. 10, pp. 1-13, 2019. https://doi.org/10.1186/s40580-018-0172-z
  13. J. Bang, J. Ahn, and S. J. Oh, "Designing a nanocrystalbased temperature and strain multi-sensor with one-step inkjet printing", J. Sens. Sci. Technol., Vol. 30, No. 4, pp. 218-222, 2021. https://doi.org/10.46670/JSST.2021.30.4.218
  14. P. Ramasamy, D. Lim, B. Kim, S. Lee, M. Lee, and J. Lee, "All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications", Chem. Commun., Vol. 52, No. 10, pp. 2067-2070, 2016. https://doi.org/10.1039/c5cc08643d
  15. X. Xu, Y. Dong, Y. Zhang, Z. Han, J. Liu, D. Yu, Y. Wei, Y. Zou, B. Huang, J. Chen, and H. Zeng, "High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing", Nano Research, Vol. 15, No. 6, pp. 5476-5482, 2022. https://doi.org/10.1007/s12274-022-4163-3
  16. D. Kwak, D. Lim, H. Ra, P. Ramasamy, and J. Lee, "High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector", RSC Adv., Vol. 6, No. 69, pp. 65252-65256, 2016. https://doi.org/10.1039/C6RA08699C
  17. A. Mandal, A. Ghosh, D. Ghosh, and S. Bhattacharyya, "Photodetector with High Responsivity by Thickness Tunable Mixed Halide Perovskite Nanosheets", ACS Appl. Mater. Interfaces, Vol. 13, No. 36, pp. 43104-43114, 2021. https://doi.org/10.1021/acsami.1c13452
  18. W. He, Q. Zhang, Y. Qi, J. Xiong, P. Ray, N. R. Pradhan, T. V. Shahbazyan, F. Han, and Q. Dai, "Luminescence properties of CsPbBr3:Mn nanocrystals", J. Nanopart. Res., Vol. 23, No. 80, pp. 1-9, 2021. https://doi.org/10.1007/s11051-020-05135-8
  19. T. Wang, T. Fang, X. Li, L. Xu, and J. Song, "Controllable Transient Photocurrent in Photodetectors Based on Perovskite Nanocrystals via Doping and Interfacial Engineering", J. Phys. Chem. C, Vol. 125, No. 10, pp. 5475-5484, 2021. https://doi.org/10.1021/acs.jpcc.0c11036
  20. M. R. Subramaniam, A. K. Pramod, S. A. Hevia, and S. K. Batabyal, "Enhanced Photoluminescence Quantum Yield, Lifetime, and Photodetector Responsivity of CsPbBr3 Quantum Dots via Antimony Tribromide Post-Treatment", J. Phys. Chem. C, Vol. 126, No. 3, pp. 1462-1470, 2022.
  21. Z. Gong, W. Zhang, S. Pan, and J. Pan, "Ag+/Bi3+ doping induced band structure and optoelectronic properties changes in CsPbBr3 crystals", J. Crystal Growth, Vol. 586, pp. 126604(1)-126604(8), 2022.
  22. D. Parobek, Y. Dong, T. Qiao, and D. H. Son, "Direct HotInjection Synthesis of Mn-Doped CsPbBr3 Nanocrystals", Chem. Mater., Vol. 30, No. 9, pp. 2939-2944, 2018. https://doi.org/10.1021/acs.chemmater.8b00310
  23. J. Navas, A. S. Coronilla, J. J. Gallardo, N. C. Hernandez, J. C. Pinero, R. Alcantara, C. F. Lorenzo, D. M. Santos, T. Aguilar, and J. M. Calleja, "New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+", Nanoscale, Vol. 7, No. 14, pp. 6216-6229, 2015. https://doi.org/10.1039/C5NR00041F
  24. W. Stam, J. J. Geuchies, T. Altantzis, K. H. Bos, J. D. Meeldijk, S. V. Aert, S. Bals, D. Vanmaekelbergh, and C. D. Donega, "Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-xMxBr3 Perovskite Nanocrystals through Cation Exchange", J. Am. Chem. Soc., Vol. 139, No. 11, pp. 4087-4097, 2017. https://doi.org/10.1021/jacs.6b13079
  25. S. Jung, J. H. Kim, J. W. Choi, J. Kang, S. Jin, Y. Kang, and M. Song, "Enhancement of Photoluminescence Quantum Yield and Stability in CsPbBr3 Perovskite Quantum Dots by Trivalent Doping", Nanomater., Vol. 10, No. 4, , pp. 710(1)-710(10), 2020.
  26. W. Yan, J. Shen, Y. Zhu, Y. Gong, J. Zhu, Z. When, and C. Li, "CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy", Nano Research, Vol. 14, No. 11, pp. 4038-4045, 2021. https://doi.org/10.1007/s12274-021-3333-z
  27. M. Gong, R. Sakidja, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, and J. Z. Wu, "High-Performance AllInorganic CsPbBr3 Perovskite Nanocrystal Photodetectors with Superior Stability", ACS Nano, Vol. 13, No. 2, pp. 1772-1783, 2019. https://doi.org/10.1021/acsnano.8b07850
  28. L. Zhou, K. Yu, F. Yang, H. Cong, N. Wang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, "Insight into the effect of ligand-exchange on colloidal CsPbBr3 perovskite quantum dot/mesoporous-TiO2 composite-based photodetectors: much faster electron injection", J. Mater. Chem. C, Vol. 5, No. 25, pp. 6224-6233, 2017. https://doi.org/10.1039/C7TC01611E
  29. C. Zhao, Z. He, P. Wangyang, J. Tan, C. Shi, A. Pan, L. He, and Y. Liu, "Bidentate Ligand-Induced Oriented Transformation of CsPbBr3 Perovskite Nanocrystals into Nanowires for X-ray Photodetectors", ACS Appl. Nano Mater., Vol. 5, No. 10, pp. 13737-13744, 2022. https://doi.org/10.1021/acsanm.2c00642
  30. M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, "The surface science of nanocrystals", Nat. Mater., Vol. 15, No. 2, pp. 141-153, 2016. https://doi.org/10.1038/NMAT4526
  31. Z. Pang, J. Zhang, W. Cao, X. Kong, and X. Peng, "Partitioning surface ligands on nanocrystals for maximal solubility", Nat. Commun., Vol. 10, No. 1, pp. 1-8, 2019. https://doi.org/10.1038/s41467-018-07882-8