DOI QR코드

DOI QR Code

The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages

  • Doyoung, Park (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Gyumin, Lim (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Sung-Jin, Yoon (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hyon-Seung, Yi (Department of Internal Medicine and Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine) ;
  • Dong Wook, Choi (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2022.08.09
  • Accepted : 2022.09.20
  • Published : 2022.11.30

Abstract

Macrophage activation has long been implicated in a myriad of human pathophysiology, particularly in the context of the dysregulated capacities of an unleashing intracellular or/and extracellular inflammatory response. A growing number of studies have functionally coupled the macrophages' inflammatory capacities with dynamic metabolic reprogramming which occurs during activation, albeit the results have been mostly interpreted through classic metabolism point of view; macrophages take advantage of the rewired metabolism as a source of energy and for biosynthetic precursors. However, a specific subset of metabolic products, namely immune-modulatory metabolites, has recently emerged as significant regulatory signals which control inflammatory responses in macrophages and the relevant extracellular milieu. In this review, we introduce recently highlighted immuno-modulatory metabolites, with the aim of understanding their physiological and pathological relevance in the macrophage inflammatory response.

Keywords

Acknowledgement

This study was supported by a research funding of Chungnam National University.

References

  1. Fullerton JN and Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15, 551-567 https://doi.org/10.1038/nrd.2016.39
  2. Netea MG, Balkwill F, Chonchol M et al (2017) A guiding map for inflammation. Nat Immunol 18, 826-831 https://doi.org/10.1038/ni.3790
  3. Turner MD, Nedjai B, Hurst T and Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843, 2563-2582 https://doi.org/10.1016/j.bbamcr.2014.05.014
  4. Fujiwara N and Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4, 281-286 https://doi.org/10.2174/1568010054022024
  5. Watanabe S, Alexander M, Misharin AV and Budinger GRS (2019) The role of macrophages in the resolution of inflammation. J Clin Invest 129, 2619-2628 https://doi.org/10.1172/jci124615
  6. Arango Duque G and Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5, 491
  7. Buck MD, Sowell RT, Kaech SM and Pearce EL (2017) Metabolic instruction of immunity. Cell 169, 570-586 https://doi.org/10.1016/j.cell.2017.04.004
  8. O'Neill LA, Kishton RJ and Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553-565 https://doi.org/10.1038/nri.2016.70
  9. Makowski L, Chaib M and Rathmell JC (2020) Immuno-metabolism: from basic mechanisms to translation. Immunol Rev 295, 5-14
  10. Warburg O (1956) On the origin of cancer cells. Science 123, 309-314 https://doi.org/10.1126/science.123.3191.309
  11. Liberti MV and Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41, 211-218 https://doi.org/10.1016/j.tibs.2015.12.001
  12. Kelly B and O'Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25, 771-784 https://doi.org/10.1038/cr.2015.68
  13. Jackson SH, Gallin JI and Holland SM (1995) The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med 182, 751-758 https://doi.org/10.1084/jem.182.3.751
  14. Hagg D, Englund MC, Jernas M et al (2006) Oxidized LDL induces a coordinated up-regulation of the glutathione and thioredoxin systems in human macrophages. Atherosclerosis 185, 282-289 https://doi.org/10.1016/j.atherosclerosis.2005.06.034
  15. Hibbs JB Jr, Taintor RR, Vavrin Z and Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157, 87-94 https://doi.org/10.1016/S0006-291X(88)80015-9
  16. Rath M, Muller I, Kropf P, Closs EI and Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5, 532
  17. Anders CB, Lawton TMW and Ammons MCB (2019) Metabolic immunomodulation of macrophage functional plasticity in nonhealing wounds. Curr Opin Infect Dis 32, 204-209 https://doi.org/10.1097/QCO.0000000000000550
  18. Nakrani MN, Wineland RH and Anjum F (2022) Physiology, glucose metabolism; in statpearls, treasure island (FL) Bookshelf ID: NBK560599
  19. Freemerman AJ, Johnson AR, Sacks GN et al (2014) Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289, 7884-7896 https://doi.org/10.1074/jbc.M113.522037
  20. Blagih J and Jones RG (2012) Polarizing macrophages through reprogramming of glucose metabolism. Cell Metab 15, 793-795
  21. Yamashita H, Takenoshita M, Sakurai M et al (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98, 9116-9121 https://doi.org/10.1073/pnas.161284298
  22. Kawaguchi T, Takenoshita M, Kabashima T and Uyeda K (2001) Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 98, 13710-13715 https://doi.org/10.1073/pnas.231370798
  23. Abdul-Wahed A, Guilmeau S and Postic C (2017) Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab 26, 324-341 https://doi.org/10.1016/j.cmet.2017.07.004
  24. Iizuka K, Takao K and Yabe D (2020) ChREBP-mediated regulation of lipid metabolism: involvement of the gut microbiota, liver, and adipose tissue. Front Endocrinol (Lausanne) 11, 587189
  25. Ortega-Prieto P and Postic C (2019) Carbohydrate sensing through the transcription factor ChREBP. Front Genet 10, 472
  26. Sarrazy V, Sore S, Viaud M et al (2015) Maintenance of macrophage redox status by ChREBP limits inflammation and apoptosis and protects against advanced atherosclerotic lesion formation. Cell Rep 13, 132-144 https://doi.org/10.1016/j.celrep.2015.08.068
  27. Jha AK, Huang SC, Sergushichev A et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419-430 https://doi.org/10.1016/j.immuni.2015.02.005
  28. Lane EA, Choi DW, Garcia-Haro L et al (2019) HCF-1 regulates de novo lipogenesis through a nutrient-sensitive complex with ChREBP. Mol Cell 75, 357-371 e357
  29. Xiao D, Zeng L, Yao K, Kong X, Wu G and Yin Y (2016) The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 48, 2067-2080 https://doi.org/10.1007/s00726-016-2254-8
  30. Liu S, Yang J and Wu Z (2021) The regulatory role of alpha-ketoglutarate metabolism in macrophages. Mediators Inflamm 2021, 5577577
  31. Schofield CJ and Zhang Z (1999) Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9, 722-731 https://doi.org/10.1016/S0959-440X(99)00036-6
  32. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2, 673-682 https://doi.org/10.1038/nrc885
  33. Cummins EP, Berra E, Comerford KM et al (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A 103, 18154-18159 https://doi.org/10.1073/pnas.0602235103
  34. Cheng MX, Cao D, Chen Y, Li JZ, Tu B and Gong JP (2019) Alpha-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats. Biomed Pharmacother 111, 1141-1146 https://doi.org/10.1016/j.biopha.2018.12.149
  35. Wilson MG and Lin MS (1988) Prenatal diagnosis of mosaicism for del (18) (q12.2q21.1) and a normal cell line. J Med Genet 25, 635-636 https://doi.org/10.1136/jmg.25.9.635
  36. Chin RM, Fu X, Pai MY et al (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397-401 https://doi.org/10.1038/nature13264
  37. Tran KA, Dillingham CM and Sridharan R (2019) The role of alpha-ketoglutarate-dependent proteins in pluripotency acquisition and maintenance. J Biol Chem 294, 5408-5419 https://doi.org/10.1074/jbc.tm118.000831
  38. Liu PS, Wang H, Li X et al (2017) Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18, 985-994 https://doi.org/10.1038/ni.3796
  39. Tannahill GM, Curtis AM, Adamik J et al (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238-242 https://doi.org/10.1038/nature11986
  40. Harber KJ, de Goede KE, Verberk SGS et al (2020) Succinate is an inflammation-induced immunoregulatory metabolite in macrophages. Metabolites 10, 372
  41. Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77-85 https://doi.org/10.1016/j.ccr.2004.11.022
  42. Palsson-McDermott EM, Curtis AM, Goel G et al (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21, 65-80
  43. Mills EL, Kelly B, Logan A et al (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457-470 e413 https://doi.org/10.1016/j.cell.2016.08.064
  44. Elia I and Haigis MC (2021) Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab 3, 21-32 https://doi.org/10.1038/s42255-020-00317-z
  45. Fremder M, Kim SW, Khamaysi A et al (2021) A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. Cell Rep 36, 109521
  46. Keiran N, Ceperuelo-Mallafre V, Calvo E et al (2019) SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 20, 581-592
  47. Trauelsen M, Hiron TK, Lin D et al (2021) Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Rep 35, 109246
  48. Yang Y and Gibson GE (2019) Succinylation links metabolism to protein functions. Neurochem Res 44, 2346-2359 https://doi.org/10.1007/s11064-019-02780-x
  49. Alleyn M, Breitzig M, Lockey R and Kolliputi N (2018) The dawn of succinylation: a posttranslational modification. Am J Physiol Cell Physiol 314, C228-C232 https://doi.org/10.1152/ajpcell.00148.2017
  50. Zhang Z, Tan M, Xie Z, Dai L, Chen Y and Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7, 58-63 https://doi.org/10.1038/nchembio.495
  51. Rardin MJ, He W, Nishida Y et al (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18, 920-933 https://doi.org/10.1016/j.cmet.2013.11.013
  52. Arts RJ, Novakovic B, Ter Horst R et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24, 807-819
  53. Ivashkiv LB (2013) Epigenetic regulation of macrophage polarization and function. Trends Immunol 34, 216-223 https://doi.org/10.1016/j.it.2012.11.001
  54. Tong WH, Sourbier C, Kovtunovych G et al (2011) The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20, 315-327 https://doi.org/10.1016/j.ccr.2011.07.018
  55. Cummins EP, Keogh CE, Crean D and Taylor CT (2016) The role of HIF in immunity and inflammation. Mol Aspects Med 47-48, 24-34 https://doi.org/10.1016/j.mam.2015.12.004
  56. Han R, Xiao J, Zhai H and Hao J (2016) Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages. J Neuroinflammation 13, 97
  57. Majkutewicz I (2022) Dimethyl fumarate: a review of preclinical efficacy in models of neurodegenerative diseases. Eur J Pharmacol 926, 175025
  58. Brennan MS, Matos MF, Li B et al (2015) Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. PLoS One 10, e0120254
  59. Blatnik M, Thorpe SR and Baynes JW (2008) Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes. Ann N Y Acad Sci 1126, 272-275 https://doi.org/10.1196/annals.1433.047
  60. Jove M, Pradas I, Mota-Martorell N et al (2020) Succination of protein thiols in human brain aging. Front Aging Neurosci 12, 52
  61. Nagai R, Brock JW, Blatnik M et al (2007) Succination of protein thiols during adipocyte maturation: a biomarker of mitochondrial stress. J Biol Chem 282, 34219-34228 https://doi.org/10.1074/jbc.M703551200
  62. Ruecker N, Jansen R, Trujillo C et al (2017) Fumarase deficiency causes protein and metabolite succination and intoxicates mycobacterium tuberculosis. Cell Chem Biol 24, 306-315 https://doi.org/10.1016/j.chembiol.2017.01.005
  63. O'Neill LAJ and Artyomov MN (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 19, 273-281 https://doi.org/10.1038/s41577-019-0128-5
  64. Michelucci A, Cordes T, Ghelfi J et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110, 7820-7825 https://doi.org/10.1073/pnas.1218599110
  65. Peace CG and O'Neill LA (2022) The role of itaconate in host defense and inflammation. J Clin Invest 132, e148548
  66. Chen M, Sun H, Boot M et al (2020) Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella. Science 369, 450-455 https://doi.org/10.1126/science.aaz1333
  67. Ruetz M, Campanello GC, Purchal M et al (2019) Itaconyl-CoA forms a stable biradical in methylmalonyl-CoA mutase and derails its activity and repair. Science 366, 589-593 https://doi.org/10.1126/science.aay0934
  68. Lampropoulou V, Sergushichev A, Bambouskova M et al (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24, 158-166 https://doi.org/10.1016/j.cmet.2016.06.004
  69. Zhu X, Guo Y, Liu Z, Yang J, Tang H and Wang Y (2021) Itaconic acid exerts anti-inflammatory and antibacterial effects via promoting pentose phosphate pathway to produce ROS. Sci Rep 11, 18173
  70. Mills EL, Ryan DG, Prag HA et al (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113-117 https://doi.org/10.1038/nature25986
  71. Liao ST, Han C, Xu DQ, Fu XW, Wang JS and Kong LY (2019) 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun 10, 5091
  72. Hooftman A, Angiari S, Hester S et al (2020) The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab 32, 468-478 e467 https://doi.org/10.1016/j.cmet.2020.07.016
  73. Daniels BP, Kofman SB, Smith JR et al (2019) The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50, 64-76 e64
  74. He R, Liu B, Xiong R et al (2022) Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsisinduced acute lung injury. Cell Death Discov 8, 43
  75. Ogger PP, Albers GJ, Hewitt RJ et al (2020) Itaconate controls the severity of pulmonary fibrosis. Sci Immunol 5, eabc1884
  76. Sohail A, Iqbal AA, Sahini N et al (2022) Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog 18, e1010219
  77. Jaiswal AK, Yadav J, Makhija S et al (2022) Irg1/itaconate metabolic pathway is a crucial determinant of dendritic cells immune-priming function and contributes to resolute allergen-induced airway inflammation. Mucosal Immunol 15, 301-313 https://doi.org/10.1038/s41385-021-00462-y
  78. Zhang S, Jiao Y, Li C et al (2021) Dimethyl itaconate alleviates the inflammatory responses of macrophages in sepsis. Inflammation 44, 549-557 https://doi.org/10.1007/s10753-020-01352-4
  79. Hooftman A and O'Neill LAJ (2019) The immunomodulatory potential of the metabolite itaconate. Trends Immunol 40, 687-698 https://doi.org/10.1016/j.it.2019.05.007
  80. ElAzzouny M, Tom CT, Evans CR et al (2017) Dimethyl itaconate is not metabolized into itaconate intracellularly. J Biol Chem 292, 4766-4769 https://doi.org/10.1074/jbc.C117.775270
  81. Swain A, Bambouskova M, Kim H et al (2020) Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat Metab 2, 594-602 https://doi.org/10.1038/s42255-020-0210-0
  82. Dominguez-Andres J, Novakovic B, Li Y et al (2019) The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29, 211-220 e215
  83. Runtsch MC, Angiari S, Hooftman A et al (2022) Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab 34, 487-501 e488
  84. Zhang Z, Chen C, Yang F et al (2022) Itaconate is a lysosomal inducer that promotes antibacterial innate immunity. Mol Cell 82, 2844-2857 e2810
  85. Schuster EM, Epple MW, Glaser KM et al (2022) TFEB induces mitochondrial itaconate synthesis to suppress bacterial growth in macrophages. Nat Metab 4, 856-866 https://doi.org/10.1038/s42255-022-00605-w
  86. Yoo HJ, Choi DW, Roh YJ et al (2022) MsrB1-regulated GAPDH oxidation plays programmatic roles in shaping metabolic and inflammatory signatures during macrophage activation. Cell Rep 41, 111598
  87. Wong Fok Lung T, Charytonowicz D, Beaumont KG et al (2022) Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 34, 761-774 e769
  88. Cameron AM, Castoldi A, Sanin DE et al (2019) Inflammatory macrophage dependence on NAD(+) salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat Immunol 20, 420-432 https://doi.org/10.1038/s41590-019-0336-y
  89. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR and Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080 https://doi.org/10.1126/science.1164097
  90. Infantino V, Iacobazzi V, Palmieri F and Menga A (2013) ATP-citrate lyase is essential for macrophage inflammatory response. Biochem Biophys Res Commun 440, 105-111 https://doi.org/10.1016/j.bbrc.2013.09.037
  91. Hu L, Yu Y, Huang H et al (2016) Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary fibrosis. Front Immunol 7, 696
  92. Palmieri EM, Menga A, Martin-Perez R et al (2017) Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 20, 1654-1666 https://doi.org/10.1016/j.celrep.2017.07.054