DOI QR코드

DOI QR Code

Changes in the Composition and Microbial Community of the Pepper Rhizosphere in Field with Bacterial Wilt Disease

  • Hyun Gi, Kong (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Mee Kyung, Sang (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ju Hee, An (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Songhwa, Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yong Ju, Jin (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jaekyeong, Song (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2022.09.23
  • Accepted : 2022.10.27
  • Published : 2022.12.01

Abstract

Bacterial wilt caused by Ralstonia solanacearum is considered one of the most harmful diseases of pepper plants. Recently, research on plant disease control through the rhizosphere microbiome has been actively conducted. In this study, the relationship with disease occurrence between the neighboring plant confirmed by analyzing the physicochemical properties of the rhizosphere soil and changes in the microbial community. The results confirmed that the microbial community changes significantly depending on the organic matters, P2O5, and clay in the soil. Despite significant differences in microbial communities according to soil composition, Actinobacteriota at the phylum level was higher in healthy plant rhizosphere (mean of relative abundance, D: 8.05 ± 1.13; H: 10.06 ± 1.59). These results suggest that Actinobacteriota may be associated with bacterial wilt disease. In this study, we present basic information for constructing of healthy soil in the future by presenting the major microbial groups that can suppress bacterial wilt.

Keywords

Acknowledgement

This work was supported by a "Research Program for Agricultural Science & Technology Development (Project No. PJ01505101)" provided by the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

References

  1. Abbasi, S., Spor, A., Sadeghi, A. and Safaie, N. 2021. Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci. Rep. 11:9317. https://doi.org/10.1038/s41598-021-88495-y
  2. Berendsen, R. L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W. P., Burmolle, M., Herschend, J., Bakker, P. and Pieterse, C. 2018. Disease-induced assemblage of a plantbeneficial bacterial consortium. ISME J. 12:1496-1507. https://doi.org/10.1038/s41396-018-0093-1
  3. Bhatti, A. A., Haq, S. and Bhat, R. A. 2017. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111:458-467 https://doi.org/10.1016/j.micpath.2017.09.036
  4. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A. Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodriguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vazquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R. and Caporaso, J. G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37:852-857. https://doi.org/10.1038/s41587-019-0209-9
  5. Breiman, L. 2001. Random forests. Mach. Learn. 45:5-32. https://doi.org/10.1023/A:1010933404324
  6. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. and Holmes, S. P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581-583. https://doi.org/10.1038/nmeth.3869
  7. Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crusemann, M., Bok Lee, Y., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95
  8. Chen, T., Nomura, K., Wang, X., Sohrabi, R., Xu, J., Yao, L., Paasch, B. C., Ma, L., Kremer, J., Cheng, Y., Zhang, L., Wang, N., Wang, E., Xin, X.-F. and He, S. Y. 2020. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580:653-657. https://doi.org/10.1038/s41586-020-2185-0
  9. Cook, R. J. and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul, MN, USA. 539 pp.
  10. Coutinho, T. A. 2005. Introduction and prospectus on the survival of R. solanacearum. In: Bacterial wilt disease and the Ralstonia solanacearum species complex, eds. by C. Allen, P. Prior and A. C. Hayward, pp. 29-38. American Phytopathological Society, St. Paul, MN, USA.
  11. Denny, T. P. 2006. Plant pathogenic Ralstonia species, part 3. In: Plant associated bacteria, ed. by S. S. Gnanamanickam, pp. 573-644. Springer, Berlin, Germany.
  12. Grey, B. E. and Steck, T. R. 2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in longterm survival and plant infection. Appl. Environ. Microbiol. 67:3866-3872. https://doi.org/10.1128/AEM.67.9.3866-3872.2001
  13. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  14. Kim, D.-R. and Kwak, Y.-S. 2022. Roads to construct and rebuild plant microbiota community. Plant Pathol. J. 38:425-431. https://doi.org/10.5423/PPJ.RW.05.2022.0065
  15. Klein, E., Ofek, M., Katan, J., Minz, D. and Gamliel, A. 2013. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology 103:23-33. https://doi.org/10.1094/PHYTO-12-11-0349
  16. Kloepper, J. W., Ryu, C.-M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  17. Kobayashi, N. and Komada, H. 1995. Screening of suppressive soils to Fusarium wilt from Kanto, Tozan and Tokai areas in Japan, and analysis of their suppressiveness. Soil Microorg. 45:21-32 (in Japanese).
  18. Kwak, M.-J., Kong, H. G., Choi, K., Kwon, S.-K., Song, J. Y., Lee, J., Lee, P. A., Choi, S. Y., Seo, M., Lee, H. J., Jung, E. J., Park, H., Roy, N., Kim, H., Lee, M. M., Rubin, E. M., Lee, S.-W. and Kim, J. F. 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36:1100-1109. https://doi.org/10.1038/nbt.4232
  19. Lee, S.-M., Kong, H. G., Song, G. C. and Ryu, C.-M. 2021. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 15:330-347. https://doi.org/10.1038/s41396-020-00785-x
  20. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. and Dangl, J. L. 2013. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10:999-1002. https://doi.org/10.1038/nmeth.2634
  21. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M. and Raaijmakers, J. M. 2011. Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science 332:1097-1100. https://doi.org/10.1126/science.1203980
  22. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and The R Development Core Team. 2011. nlme: linear and nonlinear mixed effects models. URL https://www.scienceopen.com/document?vid=c4de9063-722f-4a06-9a2a-c242f7c36b9e [10 November 2022].
  23. Raaijmakers, J. M. and Weller, D. M. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol. Plant-Microbe Interact. 11:144-152. https://doi.org/10.1094/MPMI.1998.11.2.144
  24. Rosenzweig, N., Tiedje, J. M., Quensen, J. F. 3rd, Meng, Q. and Hao, J. J. 2012. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis. 96:718-725. https://doi.org/10.1094/pdis-07-11-0571
  25. Roy, N., Choi, K., Khan, R. and Lee, S.-W. 2019. Culturing simpler and bacterial wilt suppressive microbial communities from tomato rhizosphere. Plant Pathol. J. 35:362-371. https://doi.org/10.5423/PPJ.FT.07.2019.0180
  26. Saddler, G. S. 2005. Management of bacterial wilt disease. In: Bacterial wilt disease and the Ralstonia solanacearum species complex, eds. by C. Allen, P. Prior and A. C. Hayward, pp. 121-132. American Phytopathological Society, St. Paul. MN, USA.
  27. Shiomi, Y., Nishiyama, M., Onizuka, T. and Marumoto, T. 1999. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl. Environ. Microbiol. 65:3996-4001. https://doi.org/10.1128/aem.65.9.3996-4001.1999
  28. van Elsas, J. D., Kastelein, P., de Vries, P. M. and van Overbeek, L. S. 2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can. J. Microbiol. 47:842-854. https://doi.org/10.1139/cjm-47-9-842
  29. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010