Acknowledgement
This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (Project No. PJ014895)", National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.
References
- Baek, S. G., Kim, S., Jang, J. Y., Kim, J. and Lee, T. 2020. Ferulic acid content of barley and wheat grains and head blight resistance. Res. Plant Dis. 26:250-255 (in Korean). https://doi.org/10.5423/RPD.2020.26.4.250
- Bai, G. and Shaner, G. 2004. Management and resistance in wheat and barley to fusarium head blight. Annu. Rev. Phytopathol. 42:135-161. https://doi.org/10.1146/annurev.phyto.42.040803.140340
- Buerstmayr, M., Steiner, B. and Buerstmayr, H. 2020. Breeding for Fusarium head blight resistance in wheat: progress and challenges. Plant Breed. 139:429-454. https://doi.org/10.1111/pbr.12797
- Chen, Y., Kistler, H. C. and Ma, Z. 2019. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annu. Rev. Phytopathol. 57:15-39. https://doi.org/10.1146/annurev-phyto-082718-100318
- Choo, T. M., Vigier, B., Shen, Q. Q., Martin, R. A., Ho, K. M. and Savard, M. 2004. Barley traits associated with resistance to fusarium head blight and deoxynivalenol accumulation. Phytopathology 94:1145-1150. https://doi.org/10.1094/PHYTO.2004.94.10.1145
- Del Ponte, E. M., Moreira, G. M., Ward, T. J., O'Donnell, K., Nicolli, C. P., Machado, F. J., Duffeck, M. R., Alves, K. S., Tessmann, D. J., Waalwijk, C., van der Lee, T., Zhang, H., Chulze, S. N., Stenglein, S. A., Pan, D., Vero, S., Vaillancourt, L. J., Schmale, D. G., 3rd, Esker, P. D., Moretti, A., Logrieco, A. F., Kistler, H. C., Bergstrom, G. C., Viljoen, A., Rose, L. J., van Coller, G. J. and Lee, T. 2022. Fusarium graminearum species complex: a bibliographic analysis and web-accessible database for global mapping of species and trichothecene toxin chemotypes. Phytopathology 112:741-751. https://doi.org/10.1094/PHYTO-06-21-0277-RVW
- Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics and biology. American Phytopathological Society, St. Paul. MN, USA. 268 pp.
- Gale, L. R., Harrison, S. A., Ward, T. J., O'Donnell, K., Milus, E. A., Gale, S. W. and Kistler, H. C. 2011. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124-134. https://doi.org/10.1094/PHYTO-03-10-0067
- Geddes, J., Eudes, F., Tucker, J. R., Legge, W. G. and Selinger, L. B. 2008. Evaluation of inoculation methods on infection and deoxynivalenol production by Fusarium graminearum on barley. Can. J. Plant Pathol. 30:66-73. https://doi.org/10.1080/07060660809507497
- Gilbert, J., Abramson, D., McCallum, B. and Clear, R. 2002. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins. Mycopathologia 153:209-215. https://doi.org/10.1023/A:1014940523921
- Han, O.-K. and Kim, J.-G. 2005. Establishment of artificial screening methods and evaluation of barley germplasms for resistance to Fusarium head blight. Korean J. Crop Sci. 50:191-196 (in Korean).
- He, X., Osman, M., Helm, J., Capettini, F. and Singh, P. K. 2015. Evaluation of Canadian barley breeding lines for Fusarium head blight resistance. Can. J. Plant Sci. 95:923-929. https://doi.org/10.4141/cjps-2015-062
- Jang, J. Y., Baek, S. G., Choi, J.-H., Kim, S., Kim, J., Kim, D.-W., Yun, S.-H. and Lee, T. 2019. Characterization of nivalenol-producing Fusarium asiaticum that causes cereal head blight in Korea. Plant Pathol. J. 35:543-552. https://doi.org/10.5423/PPJ.OA.06.2019.0168
- Khanal, R., Choo, T. M., Xue, A. G., Vigier, B., Savard, M. E., Blackwell, B., Wang, J., Yang, J. and Martin, R. A. 2021. Response of barley genotypes to Fusarium head blight under natural infection and artificial inoculation conditions. Plant Pathol. J. 37:455-464.
- Kim, K.-M., Kang, C.-S., Kim, Y.-K., Kim, K.-H., Park, J.-H., Yoon, Y.-M., Park, H.-H., Jeong, H.-Y., Choi, C.-H., Park, J., Kim, Y.-J., Cheong, Y.-K., Han, O.-K. and Park, T.-I. 2020. Past and current status, and prospect of winter cereal crops research for food and forage in Korea. Korean J. Breed. Sci. 52:73-92 (in Korean). https://doi.org/10.9787/kjbs.2020.52.s.73
- Knutsen, H. K., Alexander, J., Barregard, L., Bignami, M., Bruschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L. R., Nebbia, C. S., Oswald, I. P., Petersen, A., Rose, M., Roudot, A. C., Schwerdtle, T., Vleminckx, C., Vollmer, G., Wallace, H., De Saeger, S., Eriksen, G. S., Farmer, P., Fremy, J. M., Gong, Y. Y., Meyer, K., Naegeli, H., Parent-Massin, D., Rietjens, I., van Egmond, H., Altieri, A., Eskola, M., Gergelova, P., Ramos Bordajandi, L., Benkova, B., Dorr, B., Gkrillas, A., Gustavsson, N., van Manen, M. and Edler, L. 2017. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 15:e04718.
- Lee, J., Chang, I.-Y., Kim, H., Yun, S.-H., Leslie, J. F. and Lee, Y.-W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
- Lee, S., Lee, T., Kim, M., Yu, O., Im, H. and Ryu, J.-G. 2013. Survey on contamination of Fusarium mycotoxins in 2011-harvested rice and its by-products from rice processing complexes in Korea. Res. Plant Dis. 19:259-264 (in Korean). https://doi.org/10.5423/RPD.2013.19.4.259
- Lee, T., Paek, J.-S., Lee, K. A., Lee, S., Choi, J.-H., Ham, H., Hong, S. K. and Ryu, J.-G. 2016. Occurrence of toxigenic Fusarium vorosii among small grain cereals in Korea. Plant Pathol. J. 32:407-413.
- Lee, U. S., Jang, H. S., Tanaka, T., Hasegawa, A., Oh, Y. J. and Ueno, Y. 1985. The coexistence of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in Korean cereals harvested in 1983. Food Addit. Contam. 2:185-192. https://doi.org/10.1080/02652038509373542
- Ma, Z., Xie, Q., Li, G., Jia, H., Zhou, J., Kong, Z., Li, N. and Yuan, Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor. Appl. Genet. 133:1541-1568. https://doi.org/10.1007/s00122-019-03525-8
- McCormick, S. P. and Alexander, N. J. 2002. Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl. Environ. Microbiol. 68:2959-2964. https://doi.org/10.1128/AEM.68.6.2959-2964.2002
- Park, C. S., Heo, H.-Y., Kang, M.-S., Lee, C.-K., Park, K.-G., Park, J.-C., Kim, H.-S., Kim, H.-S., Hwang, J.-J., Cheong, Y.-K. and Kim, J.-G. 2008. A new white wheat variety, "Jeokjoong" with high yield, good noodle quality and moderate to scab. Korean J. Breed. Sci. 40:308-313.
- Shin, S., Son, J.-H., Park, J.-C., Kim, K.-H., Yoon, Y.-M., Cheong, Y.-K., Kim, K.-H., Hyun, J.-N., Park, C. S., DillMacky, R. and Kang, C.-S. 2018. Comparative pathogenicity of Fusarium graminearum isolates from wheat kernels in Korea. Plant Pathol. J. 34:347-355. https://doi.org/10.5423/PPJ.OA.01.2018.0013
- Steiner, B., Buerstmayr, M., Michel, S., Schweiger, W., Lemmens, M. and Buerstmayr, H. 2017. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant Pathol. 42:165-174. https://doi.org/10.1007/s40858-017-0127-7
- van der Lee, T., Zhang, H., van Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32:453-460. https://doi.org/10.1080/19440049.2014.984244
- Xu, F., Liu, W., Song, Y., Zhou, Y., Xu, X., Yang, G., Wang, J., Zhang, J. and Liu, L. 2021. The distribution of Fusarium graminearum and Fusarium asiaticum causing Fusarium head blight of wheat in relation to climate and cropping system. Plant Dis. 105:2830-2835. https://doi.org/10.1094/PDIS-01-21-0013-RE
- Yan, Z., Chen, W., van der Lee, T., Waalwijk, C., van Diepeningen, A. D., Feng, J., Zhang, H. and Liu, T. 2022. Evaluation of Fusarium head blight resistance in 410 Chinese wheat cultivars selected for their climate conditions and ecological niche using natural infection across three distinct experimental sites. Front. Plant Sci. 13:916282.