DOI QR코드

DOI QR Code

Evaluation of Barley and Wheat Germplasm for Resistance to Head Blight and Mycotoxin Production by Fusarium asiaticum and F. graminearum

  • Seul Gi, Baek (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Jin Ju, Park (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Sosoo, Kim (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Mi-Jeong, Lee (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Ji-Seon, Paek (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Jangnam, Choi (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Ja Yeong, Jang (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Jeomsoon, Kim (Microbial Safety Division, National Institute of Agricultural Sciences) ;
  • Theresa, Lee (Microbial Safety Division, National Institute of Agricultural Sciences)
  • Received : 2022.09.09
  • Accepted : 2022.10.17
  • Published : 2022.12.01

Abstract

Fusarium head blight (FHB) is one of the most serious diseases in barley and wheat, as it is usually accompanied by the production of harmful mycotoxins in the grains. To identify FHB-resistant breeding resources, we evaluated 60 elite germplasm accessions of barley (24) and wheat (36) for FHB and mycotoxin accumulation. Assessments were performed in a greenhouse and five heads per accession were inoculated with both Fusarium asiaticum (Fa73, nivalenol producer) and F. graminearum (Fg39, deoxynivalenol producer) strains. While the accessions varied in disease severity and mycotoxin production, four wheat and one barley showed <20% FHB severity repeatedly by both strains. Mycotoxin levels in these accessions ranged up to 3.9 mg/kg. FHB severity was generally higher in barley than in wheat, and Fa73 was more aggressive in both crops than Fg39. Fg39 itself, however, was more aggressive toward wheat and produced more mycotoxin in wheat than in barley. FHB severity by Fa73 and Fg39 were moderately correlated in both crops (r = 0.57/0.60 in barley and 0.42/0.58 in wheat). FHB severity and toxin production were also correlated in both crops, with a stronger correlation for Fa73 (r = 0.42/0.82 in barley, 0.70 in wheat) than for Fg39.

Keywords

Acknowledgement

This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (Project No. PJ014895)", National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

References

  1. Baek, S. G., Kim, S., Jang, J. Y., Kim, J. and Lee, T. 2020. Ferulic acid content of barley and wheat grains and head blight resistance. Res. Plant Dis. 26:250-255 (in Korean). https://doi.org/10.5423/RPD.2020.26.4.250
  2. Bai, G. and Shaner, G. 2004. Management and resistance in wheat and barley to fusarium head blight. Annu. Rev. Phytopathol. 42:135-161. https://doi.org/10.1146/annurev.phyto.42.040803.140340
  3. Buerstmayr, M., Steiner, B. and Buerstmayr, H. 2020. Breeding for Fusarium head blight resistance in wheat: progress and challenges. Plant Breed. 139:429-454. https://doi.org/10.1111/pbr.12797
  4. Chen, Y., Kistler, H. C. and Ma, Z. 2019. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annu. Rev. Phytopathol. 57:15-39. https://doi.org/10.1146/annurev-phyto-082718-100318
  5. Choo, T. M., Vigier, B., Shen, Q. Q., Martin, R. A., Ho, K. M. and Savard, M. 2004. Barley traits associated with resistance to fusarium head blight and deoxynivalenol accumulation. Phytopathology 94:1145-1150. https://doi.org/10.1094/PHYTO.2004.94.10.1145
  6. Del Ponte, E. M., Moreira, G. M., Ward, T. J., O'Donnell, K., Nicolli, C. P., Machado, F. J., Duffeck, M. R., Alves, K. S., Tessmann, D. J., Waalwijk, C., van der Lee, T., Zhang, H., Chulze, S. N., Stenglein, S. A., Pan, D., Vero, S., Vaillancourt, L. J., Schmale, D. G., 3rd, Esker, P. D., Moretti, A., Logrieco, A. F., Kistler, H. C., Bergstrom, G. C., Viljoen, A., Rose, L. J., van Coller, G. J. and Lee, T. 2022. Fusarium graminearum species complex: a bibliographic analysis and web-accessible database for global mapping of species and trichothecene toxin chemotypes. Phytopathology 112:741-751. https://doi.org/10.1094/PHYTO-06-21-0277-RVW
  7. Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics and biology. American Phytopathological Society, St. Paul. MN, USA. 268 pp.
  8. Gale, L. R., Harrison, S. A., Ward, T. J., O'Donnell, K., Milus, E. A., Gale, S. W. and Kistler, H. C. 2011. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124-134. https://doi.org/10.1094/PHYTO-03-10-0067
  9. Geddes, J., Eudes, F., Tucker, J. R., Legge, W. G. and Selinger, L. B. 2008. Evaluation of inoculation methods on infection and deoxynivalenol production by Fusarium graminearum on barley. Can. J. Plant Pathol. 30:66-73. https://doi.org/10.1080/07060660809507497
  10. Gilbert, J., Abramson, D., McCallum, B. and Clear, R. 2002. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins. Mycopathologia 153:209-215. https://doi.org/10.1023/A:1014940523921
  11. Han, O.-K. and Kim, J.-G. 2005. Establishment of artificial screening methods and evaluation of barley germplasms for resistance to Fusarium head blight. Korean J. Crop Sci. 50:191-196 (in Korean).
  12. He, X., Osman, M., Helm, J., Capettini, F. and Singh, P. K. 2015. Evaluation of Canadian barley breeding lines for Fusarium head blight resistance. Can. J. Plant Sci. 95:923-929. https://doi.org/10.4141/cjps-2015-062
  13. Jang, J. Y., Baek, S. G., Choi, J.-H., Kim, S., Kim, J., Kim, D.-W., Yun, S.-H. and Lee, T. 2019. Characterization of nivalenol-producing Fusarium asiaticum that causes cereal head blight in Korea. Plant Pathol. J. 35:543-552. https://doi.org/10.5423/PPJ.OA.06.2019.0168
  14. Khanal, R., Choo, T. M., Xue, A. G., Vigier, B., Savard, M. E., Blackwell, B., Wang, J., Yang, J. and Martin, R. A. 2021. Response of barley genotypes to Fusarium head blight under natural infection and artificial inoculation conditions. Plant Pathol. J. 37:455-464.
  15. Kim, K.-M., Kang, C.-S., Kim, Y.-K., Kim, K.-H., Park, J.-H., Yoon, Y.-M., Park, H.-H., Jeong, H.-Y., Choi, C.-H., Park, J., Kim, Y.-J., Cheong, Y.-K., Han, O.-K. and Park, T.-I. 2020. Past and current status, and prospect of winter cereal crops research for food and forage in Korea. Korean J. Breed. Sci. 52:73-92 (in Korean). https://doi.org/10.9787/kjbs.2020.52.s.73
  16. Knutsen, H. K., Alexander, J., Barregard, L., Bignami, M., Bruschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L. R., Nebbia, C. S., Oswald, I. P., Petersen, A., Rose, M., Roudot, A. C., Schwerdtle, T., Vleminckx, C., Vollmer, G., Wallace, H., De Saeger, S., Eriksen, G. S., Farmer, P., Fremy, J. M., Gong, Y. Y., Meyer, K., Naegeli, H., Parent-Massin, D., Rietjens, I., van Egmond, H., Altieri, A., Eskola, M., Gergelova, P., Ramos Bordajandi, L., Benkova, B., Dorr, B., Gkrillas, A., Gustavsson, N., van Manen, M. and Edler, L. 2017. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 15:e04718.
  17. Lee, J., Chang, I.-Y., Kim, H., Yun, S.-H., Leslie, J. F. and Lee, Y.-W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
  18. Lee, S., Lee, T., Kim, M., Yu, O., Im, H. and Ryu, J.-G. 2013. Survey on contamination of Fusarium mycotoxins in 2011-harvested rice and its by-products from rice processing complexes in Korea. Res. Plant Dis. 19:259-264 (in Korean). https://doi.org/10.5423/RPD.2013.19.4.259
  19. Lee, T., Paek, J.-S., Lee, K. A., Lee, S., Choi, J.-H., Ham, H., Hong, S. K. and Ryu, J.-G. 2016. Occurrence of toxigenic Fusarium vorosii among small grain cereals in Korea. Plant Pathol. J. 32:407-413.
  20. Lee, U. S., Jang, H. S., Tanaka, T., Hasegawa, A., Oh, Y. J. and Ueno, Y. 1985. The coexistence of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in Korean cereals harvested in 1983. Food Addit. Contam. 2:185-192. https://doi.org/10.1080/02652038509373542
  21. Ma, Z., Xie, Q., Li, G., Jia, H., Zhou, J., Kong, Z., Li, N. and Yuan, Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor. Appl. Genet. 133:1541-1568. https://doi.org/10.1007/s00122-019-03525-8
  22. McCormick, S. P. and Alexander, N. J. 2002. Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl. Environ. Microbiol. 68:2959-2964. https://doi.org/10.1128/AEM.68.6.2959-2964.2002
  23. Park, C. S., Heo, H.-Y., Kang, M.-S., Lee, C.-K., Park, K.-G., Park, J.-C., Kim, H.-S., Kim, H.-S., Hwang, J.-J., Cheong, Y.-K. and Kim, J.-G. 2008. A new white wheat variety, "Jeokjoong" with high yield, good noodle quality and moderate to scab. Korean J. Breed. Sci. 40:308-313.
  24. Shin, S., Son, J.-H., Park, J.-C., Kim, K.-H., Yoon, Y.-M., Cheong, Y.-K., Kim, K.-H., Hyun, J.-N., Park, C. S., DillMacky, R. and Kang, C.-S. 2018. Comparative pathogenicity of Fusarium graminearum isolates from wheat kernels in Korea. Plant Pathol. J. 34:347-355. https://doi.org/10.5423/PPJ.OA.01.2018.0013
  25. Steiner, B., Buerstmayr, M., Michel, S., Schweiger, W., Lemmens, M. and Buerstmayr, H. 2017. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant Pathol. 42:165-174. https://doi.org/10.1007/s40858-017-0127-7
  26. van der Lee, T., Zhang, H., van Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32:453-460. https://doi.org/10.1080/19440049.2014.984244
  27. Xu, F., Liu, W., Song, Y., Zhou, Y., Xu, X., Yang, G., Wang, J., Zhang, J. and Liu, L. 2021. The distribution of Fusarium graminearum and Fusarium asiaticum causing Fusarium head blight of wheat in relation to climate and cropping system. Plant Dis. 105:2830-2835. https://doi.org/10.1094/PDIS-01-21-0013-RE
  28. Yan, Z., Chen, W., van der Lee, T., Waalwijk, C., van Diepeningen, A. D., Feng, J., Zhang, H. and Liu, T. 2022. Evaluation of Fusarium head blight resistance in 410 Chinese wheat cultivars selected for their climate conditions and ecological niche using natural infection across three distinct experimental sites. Front. Plant Sci. 13:916282.