과제정보
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2018R1A6A1A03025582, 2020R1I1A1A01073601).
참고문헌
- Abe, K., Yano, H. 2012. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19(6): 1907-1912. https://doi.org/10.1007/s10570-012-9784-3
- Adney, B., Baker, J. 2008. Measurement of Cellulase Activities. Technical Report NREL/TP-510-42628. National Renewable Energy Laboratory (NREL), Golden, CO, USA.
- Chen, H., Nair, S.S., Chauhan, P., Yan, N. 2019. Lignin containing cellulose nanofibril application in pMDI wood adhesives for drastically improved gap-filling properties with robust bondline interfaces. Chemical Engineering Journal 360: 393-401.
- Daicho, K., Saito, T., Fujisawa, S., Isogai, A. 2018. The crystallinity of nanocellulose: Dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Applied Nano Materials 1(10): 5774-5785. https://doi.org/10.1021/acsanm.8b01438
- Fatriasari, W., Nurhamzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665. https://doi.org/10.5658/WOOD.2020.48.5.651
- Francisco, M., van den Bruinhorst, A., Kroon, M.C. 2012. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chemistry 14(8): 2153-2157.
- Fu, D., Mazza, G., Tamaki, Y. 2010. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. Journal of Agricultural and Food Chemistry 58(5): 2915-2922. https://doi.org/10.1021/jf903616y
- Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268. https://doi.org/10.1351/pac198759020257
- Han, S.Y., Park, C.W., Kwon, G.J., Kim, J.H., Kim, N.H., Lee, S.H. 2020a. Effect of [EMIM]Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413. https://doi.org/10.5658/WOOD.2020.48.3.405
- Han, S.Y., Park, C.W., Kwon, G.J., Kim, N.H., Kim, J.C., Lee, S.H. 2020b. Ionic liquid pretreatment of lignocellulosic biomass. Journal of Forest and Environmental Science 36(2): 69-77. https://doi.org/10.7747/JFES.2020.36.2.69
- Han, S.Y., Park, C.W., Lee, S.H. 2017. Preparation of lignocellulose nanofiber by mechanical defibrillation after pretreatment using cosolvent of ionic liquid and DMF. Journal of the Korean Wood Science and Technology 45(3): 268-277.
- Henriksson, M., Berglund, L.A. 2007. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. Journal of Applied Polymer Science 106(4): 2817-2824. https://doi.org/10.1002/app.26946
- Henriksson, M., Henriksson, G., Berglund, L.A., Lindstrom, T. 2007. An environmentally friendly method for enzyme-assisted preparation of micro-fibrillated cellulose (MFC) nanofibers. European Polymer Journal 43(8): 3434-3441.
- Jang, J.H., Lee, S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. Journal of the Korean Wood Science and Technology 42(6): 700-707. https://doi.org/10.5658/WOOD.2014.42.6.700
- Jang, J.H., Lee, S.H., Lee, M., Lee, S.M., Kim, N.H. 2017. Changes of micro- and nanoscopic morphology of various bioresources by different milling systems. Journal of the Korean Wood Science and Technology 45(6): 737-745. https://doi.org/10.5658/WOOD.2017.45.6.737
- Ji, S., Jang, J., Cho, E., Kim, S.H., Kang, E.S., Kim, J., Kim, H.K., Kong, H., Kim, S.K., Kim, J.Y., Park, J.U. 2017. High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials 29(24): 1700538.
- Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T. 2012. Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 82(2): 308-315. https://doi.org/10.1016/j.ejpb.2012.06.011
- Lee, S.H., Kim, H.J., Kim, J.C. 2019. Nanocellulose applications for drug delivery: A review. Journal of Forest and Environmental Science 35(3): 141-149.
- Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrils and their applications: High strength nanopapers and polymer composite films. Journal of the Korean Wood Science and Technology 39(3): 197-205. https://doi.org/10.5658/WOOD.2011.39.3.197
- Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428. https://doi.org/10.1021/ac60147a030
- Mishra, R.K., Sabu, A., Tiwari, S.K. 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society 22(8): 949-978.
- Nakagaito, A.N., Yano, H. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A 78(4): 547-552.
- Nakagaito, A.N., Yano, H. 2005. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Applied Physics A 80(1): 155-159. https://doi.org/10.1007/s00339-003-2225-2
- Okahisa, Y., Yoshida, A., Miyaguchi, S., Yano, H. 2009. Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Composites Science and Technology 69(11-12): 1958-1961. https://doi.org/10.1016/j.compscitech.2009.04.017
- Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of Korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. Journal of the Korean Wood Science and Technology 43(1): 17-24. https://doi.org/10.5658/WOOD.2015.43.1.17
- Park, S., Park, B.D. 2021. Crystallinity of low molar ratio urea-formaldehyde resins modified with cellulose nanomaterials. Journal of the Korean Wood Science and Technology 49(2): 169-180. https://doi.org/10.5658/WOOD.2021.49.2.169
- Ryu, J.R., Sim, K., Youn, H.J. 2014. Evaluation of de- watering of cellulose nanofibrils suspension and effect of cationic polyelectrolyte addition on dewatering. Journal of Korea Technical Association of the Pulp and Paper Industry 46(6): 78-86. https://doi.org/10.7584/ktappi.2014.46.6.078
- Song, W.Y., Jeong, S.B., Juhn, S.Y., Shin, S.J. 2019. Fibrillation characteristics of cellulose nanofibrils with water retention value method. Journal of Korea Technical Association of the Pulp and Paper Industry 51(1): 128-133.
- Yu, Z., Wang, W., Kong, F., Lin, M., Mustapha, A. 2019. Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells. International Journal of Biological Macromolecules 129: 887-894. https://doi.org/10.1016/j.ijbiomac.2019.02.084
- Zaini, L.H., Febrianto, F., Wistara, I.N.J., Marwanto, N., Maulana, M.I., Lee, S.H., Kim, N.H. 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Science and Technology 47(5): 597-606. https://doi.org/10.5658/WOOD.2019.47.5.597
- Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298. https://doi.org/10.5658/WOOD.2021.49.4.287
- Zhang, C.W., Xia, S.Q., Ma, P.S. 2016. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology 219: 1-5. https://doi.org/10.1016/j.biortech.2016.07.026